设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是(). A.r(A)=mB.r(A)=NC.A为可逆矩阵D.r(A)=b且b可由A的列向量组线性表示

设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().


A.r(A)=m
B.r(A)=N
C.A为可逆矩阵
D.r(A)=b且b可由A的列向量组线性表示


参考解析

解析:方程组AX=b有解的充分必要条件是6可由矩阵A的列向量组线性表示,在方程组AX=b有解的情形下,其有唯一解的充分必要条件是r(A)=n,故选(D).

相关考题:

设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。

设A为矩阵,都是线性方程组Ax=0的解,则矩阵A为:

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

设A是m×N阶矩阵,B是n×m阶矩阵,则().A.当m>n时,线性齐次方程组ABX=0有非零解B.当m>n时,线性齐次方程组ABX=0只有零解C.当n>m时,线性齐次方程组ABX=0有非零解D.当n>m时,线性齐次方程组ABX=0只有零解

设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是(). A.r(A)=mB.r(A)=NC.A为可逆矩阵D.r(A)=b且b可由A的列向量组线性表示

设A是m×n阶矩阵,则下列命题正确的是().A.若mB.若m>n,则方程组AX=b一定有唯一解C.若r(A)=n,则方程组AX=b一定有唯一解D.若r(A)=m,则方程组AX=b一定有解

若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解.B.r=n时,方程组Ax=b有唯一解.C.m=n时,方程组Ax=b有唯一解.D.r

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解

设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().A.r(A)=sB.r(A)=mC.r(B)=sD.r(B)=n

非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。A 当r=m时,方程组AX=b有解B 当r=n时,方程组AX=b有惟一解C 当m=n时,方程组AX=b有惟一解D 当r<n时,方程组AX=b有无穷多解

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.

设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).A.r=m时,方程组AX=b有解B.r=n时,方程组AX=b有唯一解C.m=m时,方程组AX=b有唯一解D.r<n时,方程组AX=b有无穷多解

单选题设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是(  )。A若Ax=0仅有零解,则Ax=b有唯一解B若Ax=0有非零解,则Ax=b有无穷多个解C若Ax=b有无穷多个解,则Ax=0仅有零解D若Ax=b有无穷多个解,则Ax=0有非零解

单选题设A是m×n矩阵,则m<n是齐次线性方程组ATAX(→)=0(→)有非零解的(  )。A必要条件B充分条件C充要条件D以上都不对

填空题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

单选题非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。Ar=m时,方程组AX(→)=b(→)有解Br=n时,方程组AX(→)=b(→)有唯一解Cm=n时,方程组AX(→)=b(→)有唯一解Dr<n时,方程组AX(→)=b(→)有无穷多解

问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。