填空题设离散型随机变量X服从于参数为λ(λ>0)的泊松分布,已知P{X=1}=P{X=2},则λ=____。
填空题
设离散型随机变量X服从于参数为λ(λ>0)的泊松分布,已知P{X=1}=P{X=2},则λ=____。
参考解析
解析:
根据题意λe-λ/1!=λ2e-λ/2!,得λ=2。
根据题意λe-λ/1!=λ2e-λ/2!,得λ=2。
相关考题:
填空题若随机变量X1,X2,X3相互独立且服从于相同的0-1分布P{X=1}=0.7,P{X=0}=0.3,则随机变量P{X=0}=0.3.则随机变量Y=X1+X2+X3服从于参数为____的____分布,且E(Y)=____.D(Y)=____.
填空题设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2~N(0,22),X3服从参数为λ=3的泊松分布,记随机变量Y=X1-2X2+3X3,则D(Y)=____。
填空题若随机变量X1,X2,X3相互独立且服从于相同的0-1分布,P{X=1}=0.7,P{X=0}=0.3,则随机变量Y=X1+X2+X3服从于参数为____的____分布,且E(Y)=____。D(Y)=____。