问答题39.设X的概率密度为 求:(1)X的分布函数F(x); (2)P{X一0.5}.
问答题
39.设X的概率密度为 求:(1)X的分布函数F(x); (2)P{X一0.5}.
参考解析
解析:
相关考题:
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是 A.Af1(x)f2(x)B.2f2(x)F1(x)C.f1(x)F2(x)D.f1(x)F2(x)+f2(x)f1(x)
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0 (Ⅰ)求Z的概率密度; (Ⅱ)p为何值时,X与Z不相关; (Ⅲ)X与Z是否相互独立?
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()A、f1(x)f2(x)B、2f2(x)F1(x)C、f1(x)F2(x)D、f1(x)F2(x)+f2(x)F1(x)
设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数
单选题设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则( )。AP{X≤0}=P{X≥0}=0.5Bf(-x)=1-f(x)CF(x)=-F(-x)DP{X≥2}=P{X<2}=0.5