设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵B.设A,B可逆,则A^-1+B^-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵

设A,B为n阶对称矩阵,下列结论不正确的是().

A.AB为对称矩阵
B.设A,B可逆,则A^-1+B^-1为对称矩阵
C.A+B为对称矩阵
D.kA为对称矩阵

参考解析

解析:

相关考题:

设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

设A是n阶实对称矩阵,则A有n个()特征值.

设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B)B.|A|=|B|C.A~BD.A,B与同一个实对称矩阵合同

设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵B.设A,B可逆,则A^-1+B^-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵

设A是一个n阶矩阵,那么是对称矩阵的是( ).

设A,B为n阶可逆矩阵,则().

设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=OB.A=EC.若A不可逆,则A=OD.若A可逆,则A=E

设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同B.矩阵A的特征值都是实数C.存在可逆矩阵P,使P^-1AP为对角阵D.存在正交阵Q,使Q^TAQ为对角阵

设A为n阶矩阵,下列结论正确的是().

设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA

设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.

设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设a为N阶可逆矩阵,则( ).《》( )

设A是m阶矩阵,B是n阶矩阵,行列式等于( )。

设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。A. α是矩阵-2A的属于特征值-2λ的特征向量D. α是矩阵AT的属于特征值λ的特征向量

设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).

设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().A、A+2EB、A+ΛC、ABD、A-B

问答题设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。

单选题设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().AA+2EBA+ΛCABDA-B