设A为n阶矩阵,下列结论正确的是().

设A为n阶矩阵,下列结论正确的是().


参考解析

解析:

相关考题:

设A为n阶方阵,则以下结论正确的是( )。

设A为n阶可逆矩阵,则下面各式恒正确的是( ).

设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵B.设A,B可逆,则A^-1+B^-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵

设A是一个n阶矩阵,那么是对称矩阵的是( ).

设A为n阶矩阵,k为常数,则(kA)+等于().

设A,B为n阶可逆矩阵,则().

设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>mB.r=mC.rD.r≥m

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=OB.A=EC.若A不可逆,则A=OD.若A可逆,则A=E

设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同B.矩阵A的特征值都是实数C.存在可逆矩阵P,使P^-1AP为对角阵D.存在正交阵Q,使Q^TAQ为对角阵

设A,B均为n 阶方阵,下面结论正确的是( ).

下列结论中正确的是(  )。A、 矩阵A的行秩与列秩可以不等B、 秩为r的矩阵中,所有r阶子式均不为零C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D、 秩为r的矩阵中,不存在等于零的r-1阶子式

设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.

设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设A,B为n阶矩阵,且r(A)+r(B)

设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

设a为N阶可逆矩阵,则( ).《》( )

设A是m阶矩阵,B是n阶矩阵,行列式等于( )。

设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。A. α是矩阵-2A的属于特征值-2λ的特征向量D. α是矩阵AT的属于特征值λ的特征向量

设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).

设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*

单选题下列结论中正确的是( )A矩阵A的行秩与列秩可以不等B秩为r的矩阵中,所有r阶子式均不为零C若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D秩为r的矩阵中,不存在等于零的r-1阶子式