N阶实对称矩阵A正定的充分必要条件是().A.A无负特征值B.A是满秩矩阵C.A的每个特征值都是单值D.A^-1是正定矩阵

N阶实对称矩阵A正定的充分必要条件是().



A.A无负特征值
B.A是满秩矩阵
C.A的每个特征值都是单值
D.A^-1是正定矩阵

参考解析

解析:A正定的充分必要条件是A的特征值都是正数,(A)不对;若A为正定矩阵,则A一定是满秩矩阵,但A是满秩矩阵只能保证A的特征值都是非零常数,不能保证都是正数,(B)不对;(C)既不是充分条件又不是必要条件;显然(D)既是充分条件又是必要条件,选(D).

相关考题:

n阶对称矩阵A正定的充分必要条件是()。 A、|A|0B、存在n阶方阵C使A=CTCC、负惯性指标为零D、各阶顺序主子式均为正数

n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的()。 A、充分必要条件;B、必要而非充分条件;C、充分而非必要条件;D、既非充分也非必要条件

设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

设A是n阶实对称矩阵,则A有n个()特征值.

设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

n阶正交矩阵的乘积是()矩阵。 A、单位B、对称C、实D、正交

设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B)B.|A|=|B|C.A~BD.A,B与同一个实对称矩阵合同

n阶矩阵A可逆的充分必要条件是

N阶实对称矩阵A正定的充分必要条件是().A.A无负特征值B.A是满秩矩阵C.A的每个特征值都是单值D.A^-1是正定矩阵

对称矩阵A正定的充分必要条件是|A|>O

实二次型矩阵A正定的充分必要条件是( )。A.二次型的标准形的n个系数全为正B.|A|>0C.矩阵A的特征值为2D.r(A)=n

设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵

n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n)B.A的所有特征值非负C.D.秩(A)=n

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

设A为n阶矩阵,则A以零为其特征值是A为奇异矩阵(即 A =0)的:A.充分非必要条件 B.必要非充分条件 C.既非充分也非必要条件 D.充分必要条件

设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

设A是n阶正定矩阵,证明:|E+A|>1.

设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

试证:如果A,B都是n阶正定矩阵,则A+B也是正定的

设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使,即A与单位阵E合同

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

n阶方阵A为正定的充分必要条件是()。

n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n