若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解《》( )
若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解《》( )
参考解析
解析:
相关考题:
设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
设A是m×N阶矩阵,B是n×m阶矩阵,则().A.当m>n时,线性齐次方程组ABX=0有非零解B.当m>n时,线性齐次方程组ABX=0只有零解C.当n>m时,线性齐次方程组ABX=0有非零解D.当n>m时,线性齐次方程组ABX=0只有零解
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解.B.r=n时,方程组Ax=b有唯一解.C.m=n时,方程组Ax=b有唯一解.D.r
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解
非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。A 当r=m时,方程组AX=b有解B 当r=n时,方程组AX=b有惟一解C 当m=n时,方程组AX=b有惟一解D 当r<n时,方程组AX=b有无穷多解
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).A.r=m时,方程组AX=b有解B.r=n时,方程组AX=b有唯一解C.m=m时,方程组AX=b有唯一解D.r<n时,方程组AX=b有无穷多解
单选题设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A若Ax=0仅有零解,则Ax=b有唯一解B若Ax=0有非零解,则Ax=b有无穷多个解C若Ax=b有无穷多个解,则Ax=0仅有零解D若Ax=b有无穷多个解,则Ax=0有非零解
单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是( )。A若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解
单选题若A为m×n矩阵,B为n×m矩阵,则( )。A当m>n时,ABX(→)=0(→)必有非零解B当m>n时,AB必可逆C当n>m时,ABX(→)=0(→)只有零解D当n>m时,必有r(AB)<m
单选题非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )。Ar=m时,方程组AX(→)=b(→)有解Br=n时,方程组AX(→)=b(→)有唯一解Cm=n时,方程组AX(→)=b(→)有唯一解Dr<n时,方程组AX(→)=b(→)有无穷多解
问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。