非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解.B.r=n时,方程组Ax=b有唯一解.C.m=n时,方程组Ax=b有唯一解.D.r

非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

A.r=m时,方程组A-6有解.
B.r=n时,方程组Ax=b有唯一解.
C.m=n时,方程组Ax=b有唯一解.
D.r

参考解析

解析:因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

相关考题:

设n元齐次线性方程组AX=O只有零解,则秩(A)=()。

当()时,线性方程组AX=b(b≠0)有唯一解,其中n是未知量的个数。

设n元齐次线性方程组Ax=o,r(A)=rn,则基础解系含有解向量的个数n个。() 此题为判断题(对,错)。

设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。 A.2B.5C.3D.1

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:A.AX=0仅有零解B.AX=0必有非零解C.AX=0—定无解D.AX=b必有无穷多解

若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解

若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解.B.r=n时,方程组Ax=b有唯一解.C.m=n时,方程组Ax=b有唯一解.D.r

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:  ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);  ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;  ③若Ax=0与Bx=0同解,则秩(A)=秩(B);  ④若秩(A)=秩(B)则Ax=0与Bx=0同解;  以上命题中正确的是A.①②.B.①③.C.②④.D.③④,

设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=nB.r<nC.r≥nD.r>n

非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。

非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。A 当r=m时,方程组AX=b有解B 当r=n时,方程组AX=b有惟一解C 当m=n时,方程组AX=b有惟一解D 当r<n时,方程组AX=b有无穷多解

设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=mB.秩r(A)=m,秩r(B)=nC.秩r(A)=n,秩r(B)=mD.秩r(A)=n,秩r(B)=n

若非齐次线性方程组中,方程的个数少于未知量的个数,则下列结论中正确的是:A.AX=0仅有零解B.AX=0必有非零解C.AX=0 —定无解D.AX=b必有无穷多解

若非齐次线性方程组Ax=b中方程个数少于未知量个数,那么( )。 A. Ax = b必有无穷多解 B.Ax=0必有非零解C.Ax=0仅有零解 D. Ax= 0一定无解

设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。

非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).A.r=m时,方程组AX=b有解B.r=n时,方程组AX=b有唯一解C.m=m时,方程组AX=b有唯一解D.r<n时,方程组AX=b有无穷多解

若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。A、Ax=0仅有零解B、Ax=0必有非零解C、Ax=0一定无解D、Ax=b必有无穷多解

填空题设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

单选题若非齐次线性方程组Ax=b中,方程的个数少于未知量的个数,则下列结论中正确的是(  )。[2013年真题]AAx=0仅有零解BAx=0必有非零解CAx=0一定无解DAx=b必有无穷多解

单选题非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。Ar=m时,方程组AX(→)=b(→)有解Br=n时,方程组AX(→)=b(→)有唯一解Cm=n时,方程组AX(→)=b(→)有唯一解Dr<n时,方程组AX(→)=b(→)有无穷多解

单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。AA的任意m个列向量必线性无关BA的任一个m阶子式不等于0C非齐次线性方程组AX(→)=b(→)一定有无穷多组解DA通过行初等变换可化为(Em,0)

单选题(2013)若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:()AAX=0仅有零解BAX=0必有非零解CAX=0一定无解DAX=b必有无穷多解

单选题若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。AAx=0仅有零解BAx=0必有非零解CAx=0一定无解DAx=b必有无穷多解