设三次多项式函数则f(x)的极大值点为( )A.0B.1C.-1D.2
设三次多项式函数则f(x)的极大值点为( )
A.0
B.1
C.-1
D.2
B.1
C.-1
D.2
参考解析
解析:
相关考题:
设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(52)。A.一个极小值点和两个极大值点B.两个极小值点和一个极大值点C.两个极小值点和两个极大值点D.三个极小值点和一个极大值点
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0B.(x-a)[f(x)-f(a)]≤0C.D.
f(x)在(-∞,+∞)内连续,其导数函数f′(x)图形如图所示,则f(x)有( )。A.一个极小值点和两个极大值点B.两个极小值点和两个极大值点C.两个极小值点和一个极大值点D.一个极小值点和三个极大值点
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数B.设f(x)为单调函数,则f(x)也为单调函数C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
设函数y-f(x)连续,除x=a外f''(x)均存在。一一阶导函数y'=f(x)的图形如下,则y=f(x)A.有两个极大值点,一个极小值点,一个拐点B.有一个极大值点,一个极小值点,两个拐点C.有一个极大值点,一个极小值点,一个拐点D.有一个极大值点,两个极小值点,两个拐点
设函数y=f(x)的导函数,满足f′(一1)=0,当x<-l时,f′(x)<0;当x>-l时,f′(x)>0.则下列结论肯定正确的是( ).《》( )A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点
单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。Af(0)是f(x)的极大值Bf(0)是f(x)的极小值C点(0,f(0))是曲线y=f(x)的拐点Df(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
单选题设f(x)在x=0处满足f′(0)=f″(0)=…=f(n)(0),f(n+1)(0)>0,则( )。A当n为偶数时,x=0是f(x)的极大值点B当n为偶数时,x=0是f(x)的极小值点C当n为奇数时,x=0是f(x)的极大值点D当n为奇数时,x=0是f(x)的极小值点
单选题设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)( )。A不是f(x,y)的连续点B不是f(x,y)的极值点C是f(x,y)的极大值点D是f(x,y)的极小值点