设三次多项式函数则f(x)的极大值点为( )A.0B.1C.-1D.2

设三次多项式函数则f(x)的极大值点为( )


A.0

B.1

C.-1

D.2

参考解析

解析:

相关考题:

设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(52)。A.一个极小值点和两个极大值点B.两个极小值点和一个极大值点C.两个极小值点和两个极大值点D.三个极小值点和一个极大值点

设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处( )。A.必取极大值B.必取极小值C.不可能取极值D.是否取极值不能确定

设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )

设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0B.(x-a)[f(x)-f(a)]≤0C.D.

设一个三次函数的导数为x2-2x-8,则该函数的极大值与极小值的差是:A.-36B.12C.36D.以上都不对

设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处( )A.必取极大值B.必取极小值C.不可能取极值D.是否取得极值不能确定

f(x)在(-∞,+∞)内连续,其导数函数f′(x)图形如图所示,则f(x)有(  )。A.一个极小值点和两个极大值点B.两个极小值点和两个极大值点C.两个极小值点和一个极大值点D.一个极小值点和三个极大值点

设函数f(x)在x=1处可导,且f'(1)=0,若f"(1)>0,则f(1)是()A.极大值B.极小值C.不是极值D.是拐点

下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数B.设f(x)为单调函数,则f(x)也为单调函数C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0

设函数y-f(x)连续,除x=a外f''(x)均存在。一一阶导函数y'=f(x)的图形如下,则y=f(x)A.有两个极大值点,一个极小值点,一个拐点B.有一个极大值点,一个极小值点,两个拐点C.有一个极大值点,一个极小值点,一个拐点D.有一个极大值点,两个极小值点,两个拐点

设函数y=f(x)的导函数,满足f′(一1)=0,当x<-l时,f′(x)<0;当x>-l时,f′(x)>0.则下列结论肯定正确的是( ).《》( )A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点

函数y(x)的导函数f(x)的图象如图所示,Xo=-1,则( )A、X。不是驻点B、x。是驻点,但不是极值点C、x。是极小值点D、 X。极大值点

设函数f(x)=(1+x)ex,则函数f(x)( )A.有极小值B.有极大值C.既有极小值又有极大值D.无极值

设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点

设函数f(x,y)=x3+y3-3xy,则()。A、f(0,0)为极大值B、f(0,0)为极小值C、f(1,1)为极大值D、f(1,1)为极小值

单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。Af(0)是f(x)的极大值Bf(0)是f(x)的极小值C点(0,f(0))是曲线y=f(x)的拐点Df(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点

单选题设一个三次函数的导数为x2-2x-8,则该函数的极大值与极小值的差是:()A-36B12C36D以上都不对

单选题设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处(  )A必取极大值B必取极小值C不可能取极值D是否取得极值不能确定

单选题设f(x)在x=0处满足f′(0)=f″(0)=…=f(n)(0),f(n+1)(0)>0,则(  )。A当n为偶数时,x=0是f(x)的极大值点B当n为偶数时,x=0是f(x)的极小值点C当n为奇数时,x=0是f(x)的极大值点D当n为奇数时,x=0是f(x)的极小值点

单选题设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)(  )。A不是f(x,y)的连续点B不是f(x,y)的极值点C是f(x,y)的极大值点D是f(x,y)的极小值点