以“三角形的中位线定理”教学为例,简述数学定理教学的主要环节。
以“三角形的中位线定理”教学为例,简述数学定理教学的主要环节。
参考解析
解析:本题主要考查初中数学课程的内容标准,教学工作的基本环节,以及课堂教学设计等相关知识。
(1)数学定理教学的主要环节有:定理的引入,定理的证明,定理的运用。
(2)数学定理学习的一般环节:
①了解定理的内容,能够解决什么问题(情境引入中体现);
②理解定理的含义,认识定理的条件和结论,如在公式推导过程中对条件引起注意,通过对结论从结论、功能、性质,使用步骤等角度分析以加深印象和理解(探索新知中体现);
③定理的证明或推导过程:学生与老师一起研究证明方法,如不需证明,学生根据老师提供的材料体会定理规定的合理性(探索新知中体现);
④熟悉定理的使用。循序渐进地定理的应用,将定理纳入已有的知识体系中去(巩固练习中体现);
⑤引申和拓展定理的运用(知识拓展中体现)。
(1)数学定理教学的主要环节有:定理的引入,定理的证明,定理的运用。
(2)数学定理学习的一般环节:
①了解定理的内容,能够解决什么问题(情境引入中体现);
②理解定理的含义,认识定理的条件和结论,如在公式推导过程中对条件引起注意,通过对结论从结论、功能、性质,使用步骤等角度分析以加深印象和理解(探索新知中体现);
③定理的证明或推导过程:学生与老师一起研究证明方法,如不需证明,学生根据老师提供的材料体会定理规定的合理性(探索新知中体现);
④熟悉定理的使用。循序渐进地定理的应用,将定理纳入已有的知识体系中去(巩固练习中体现);
⑤引申和拓展定理的运用(知识拓展中体现)。
相关考题:
初中数学《三角形中位线的定理》一、考题回顾题目来源:5月19日 上午 广东省 面试考题试讲题目1.题目: 三角形中位线的定理2.内容:3.基本要求:(1)试讲十分钟左右;(2)要有板书;(3)明确目的,思路清晰;(4)让学生经历中位线定理的探究过程,并能证明。答辩题目1. 为什么要学习三角形中位线?2. 在课堂中,怎样培养学生的观察力呢?
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 (1)该课程设定需要使学生达到什么能力目标 (2)本课程的教学重点与难点。 (3)教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
针对“角平分线的性质定理”的内容,请你完成下列任务:(1)叙述角平分线的性质定理; (5分)(2)设计“角平分线的性质定理“教学过程(只要求写出新课导入、定理形成与证明过程),并说明设计意图; (20分)(3)借助“角平分线的性质定理”,简述如何帮助学生积累认识几何图形的数学活动经验.(5分)
在学习了平行四边形、三角形的中位线定理后,某教师设计了一节习题课的教学目标:①进一步理解三角形中位线定理、平行四边形的判定定理;②能综合运用三角形中位线定理、平行四边形的判定定理等知识解决问题;③提高发现和提出数学问题的能力。他的教学过程设计中包含了下面的一道例题:如图1,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。问题一求证:四边形EFGH是平行四边形;问题二如何改变问题中的条件.才能分别得到一个菱形、矩形、正方形针对上述材料,完成下列任务:(1)结合该教师的教学目标,分析该例题的设计意图;(2)类比上述例题中的问题二,设计一个新问题,使之符合教学目标③的要求;(3)设计该例题的简要教学流程,并给出解题后的小结提纲。
在学习了平行四边形、三角形的中位线定理后,某老师设计了一个教学目标。① 进一步理解三角形中位线定理和平行四边形判定定理② 运用三角形中位线定理、平行四边形判定定理解决问题③ 提高发现解决能力他的教学过程设计包含以下一道例题:如图1,在四边形ABCD中,EFGH分别是AB、BC、CD、DA中点,问题一、求证四边形EFGH是平行四边形。问题二、如何改变问题条件,从而分别得到菱形、矩形、正方形。针对上述材料,完成以下任务(1)结合目标分析该例题设计意图(10分)(2)类比上述例题问题二设计一个新问题,使之符合教学目标③要求(8分)(3)设计该例题简要教学流程(8分)并给出解题的小结提纲(4分)
针对“二项式定理”的教学,教师制定了如下的教学目标:①掌握二项式定理,能用计数原理推导二项式定理;?②经历发现二项式定理的过程。依据这一教学目标,请完成下列任务:(1)设计一个发现二项式定理的教学引入片段,并说明设计意图;(15分)?(2)给出引导学生运用计数原理推导二项式定理的基本步骤。(15分)?
单选题对数学定理喜爱程度排名的调查中显示,得分最高的是()。A素数无限多B毕达哥拉斯定理C三角形相似D欧拉公式