单选题一个对象的离群点得分是该对象周围密度的逆。这是基于()的离群点定义。A概率B邻近度C密度D聚类
单选题
一个对象的离群点得分是该对象周围密度的逆。这是基于()的离群点定义。
A
概率
B
邻近度
C
密度
D
聚类
参考解析
解析:
暂无解析
相关考题:
下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。A、JP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇B、JP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇C、JP聚类是基于SNN相似度的概念D、JP聚类的基本时间复杂度为O(m)
单选题下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。AJP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇BJP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇CJP聚类是基于SNN相似度的概念DJP聚类的基本时间复杂度为O(m)
单选题()是一个观测值,它与其他观测值的差别如此之大,以至于怀疑它是由不同的机制产生的。A边界点B质心C离群点D核心点