问答题x, 2y, and 2z-1 are consecutive integers.

问答题
x, 2y, and 2z-1 are consecutive integers.

参考解析

解析:
因为x,2y,2z-1是三个连续数字,所以2z-1>2y,所以z-y>1/2>0,所以A小于B,故本题选择B项。

相关考题:

已知x=0.10110, y=- 0.01010,求[x/2]补+[2y]补 并判断是否发生溢出。

以下程序段运行结束后,变量X的值为( )。 X=2Y=4DoX=x*yY=y+lLoop While y 以下程序段运行结束后,变量X的值为( )。 X=2Y=4DoX=x*yY=y+lLoop While yA.2B.4C.8D.20

以下程序的运行结果是【 】。x=1.5DO CASECASE x>2y=2CASE xly=lENDCASE?y

以下程序的运行结果是【 】。x=1.5DO CASECASE x>2y=2CASE x>1y=1ENDCASE?y

(A) 2x + 2y (B) x + y(C) 2x-2y (D) x-y

微分方程(3 + 2y)xdx+ (1+x)dy= 0的通解为:(A) l1+ x2=Cy (B) (1+x2)(3 + 2y) = C

下列函数中不是方程 y'' ? 2y' + y = 0的解的函数是;(A) x2ex (B) e x(C) xe x (D) (x+2)e x

设二维离散型随机变量(X,Y)的概率分布为    (Ⅰ)求P{X=2Y);  (Ⅱ)求Cov(X-Y,Y).

求微分方程y"-3y'+2y=2xe^x的通解.

A. f″(x^2y) B. f′(x^2y)+x^2f″(x^2y) C. 2x[f′(x^2y)+yf″(x^2y)] D. 2x[f′(x^2y)+x^2yf″(x^2y)]

以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:A. y''-2y'-3y=0B. y''+2y'-3y=0C. y''-3y'+2y=0D. y''+2y'+y=0

微分方程(1+ 2y)xdx + (1+x2)dy=0的通解是( )。

具有待定特解形式为y=A1x+A2+B1ex的微分方程是下列中哪个方程()?A、y″+y′-2y=2+exB、y″-y′-2y=4x+2exC、y″-2y′+y=x+exD、y″-2y′=4+2ex

单选题The total starting air capacity required for reversible main engines is to be sufficient for at least ().Asix consecutive startsBeight consecutive startsCten consecutive startsDtwelve consecutive starts

单选题Set X = even integers and Set Y = odd integers. Therefore X ∩ Y = ______.Aprime numbersBintegersCempty setDcomposite numbersEwhole numbers

问答题If w+x+y=42, what is the value of wxy?  (1) x and y are consecutive odd integers  (2) w=2x

问答题翻译:consecutive voyage charter

多选题Which of the following equations are for lines which are perpendicular to the line y=2x+4?A2y +x = 5B2y –x = 3Cx + 2y = 7Dx – 2y = 4E4y +2x = 0

单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是(  )。[2012年真题]Ay″-2y′-3y=0By″+2y′-3y=0Cy″-3y′+2y=0Dy″-2y′-3y=0

单选题(2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()Ay″-2y′-3y=0By″+2y′-3y=0Cy″-3y′+2y=0Dy″+2y′+y=0

单选题函数y=C1ex+C2e-2x+xex满足的一个微分方程是(  )。Ay″-y′-2y=3xexBy″-y′-2y=3exCy″+y′-2y=3xexDy″+y′-2y=3ex

问答题Which party won 4 consecutive elections and was in power for quiet a long time from 1979 to 1997?

单选题x, y, and z are positive integers. Which of the following lists all the possible ways for x + y + z to be an odd number?I. One of the numbers is odd.II. Two of the numbers are odd.III. Three of the numbers are odd.AIBI and IICI and IIIDII and III

单选题微分方程y″-2y′+2y=ex的通解为(  )。Ay=ex(c1cosx-c2sinx)+exBy=ex(c1cos2x-c2sin2x)+eCy=ex(c1cosx+c2sinx)+exDy=ex(c1cos2x+c2sin2x)+ex