若一阶方程y'=f(x,y)中,f(x,y)=u(x)v(y),则它是()。A、线性方程B、齐次方程C、变量可分离方程D、恰当方程
若一阶方程y'=f(x,y)中,f(x,y)=u(x)v(y),则它是()。
- A、线性方程
- B、齐次方程
- C、变量可分离方程
- D、恰当方程
相关考题:
(53)设 U 是所有属性的集合,X、Y、Z 都是 U 的子集,且 Z=U?X?Y。下列关于多值依赖的叙述中,不正确的是( )。A)若 X→→Y,则 X→→ZB)若 X→Y,则 X→→YC)若 X→→Y,且 Y'ìY,则 X→→Y'D)若 Z=F,则 X→→Y
设F是属性组U上的一组函数依赖,下列叙述正确的是A.若Y∈U则X→Y为F所逻辑蕴含B.若X∈U则X→Y为F所逻辑蕴含C.若X→Y为F所逻辑蕴含,且Z∈U则X→YZ为F所逻辑蕴含D.若X→Y及X→Z为F所逻辑蕴含,则X→Z为F所逻辑蕴含
A.f(-x,y)=f(x,y),f(x,-y)=-f(x,y)B.f(-x,y)=f(x,y),f(x,-y)=f(x,y)C.f(-x,y)=-f(x,y),f(x,-y)=-f(x,y)D.f(-x,y)=-f(x,y),f(x,-y)=f(x,y)
设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +cC. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)
给定关系模式 R;其中 U 为属性集,F 是 U 上的一组函数依赖,那么 Armstroog 公理系统的增广律是指( )。A.若 X→Y,X→Z,则 X→YZ 为 F 所蕴涵B.若 X→Y,WY→Z,则 XW→Z 为 F 所蕴涵C.若 X→Y,Y→Z 为 F 所蕴涵,则 X→Z 为 F 所蕴涵D.若 X→Y,为 F 所蕴涵,且 Z?U,则入 XZ→YZ 为 F 所蕴涵
设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵B.若X→Y,X→Z,则X→YZ为F所蕴涵C.若X→Y,WY→Z,则XW→Z为F所蕴涵D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵
给定关系模式R,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。A.若X→Y,X→Z,则X→YZ为F所蕴涵B.若X→Y,WY→Z,则XW→Z为F所蕴涵C.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵D.若Ⅹ→Y为F所蕴涵,且Z U,则XZ→YZ为F所蕴涵
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U−X−Y。下列关于多值依赖的叙述中,不正确的是()。A、若X→→Y,则X→→ZB、若X→Y,则X→→YC、若X→→Y,且Y’ÌY,则X→→Y’D、若Z=F,则X→→Y
用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。A、y=φ(x)与x轴交点的横坐标B、y=x与y=φ(x)交点的横坐标C、y=x与x轴的交点的横坐标D、y=x与y=φ(x)的交点
单选题设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=( )。A-yf1′/x+xf2′/yB2(-yf1′/x+xf2′/y)C-yf1′/x+2xf2′/yD-yf1′/x+f2′/y
单选题若函数u=xy·f[(x+y)/xy],f(t)为可微函数,且满足x2∂u/∂x-y2∂u/∂y=G(x,y)u,则G(x,y)必等于( )。Ax+yBx-yCx2-y2D(x+y)2
单选题若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是( ).A曲线C的方程是f(x,y)=0B以方程f(x,y)=0的解为坐标的点都在曲线C上C方程f(x,y)=0的曲线是CD方程f(x,y)=0表示的曲线不一定是C
单选题设y1(x)是方程y′+P(x)y=f1(x)的一个解,y2(x)是方程y′+P(x)y=f2(x)的一个解,则y=y1(x)+y2(x)是方程( )的解。Ay′+P(x)y=f1(x)+f2(x)By+P(x)y′=f1(x)-f2(x)Cy+P(x)y′=f1(x)+f2(x)Dy′+P(x)y=f1(x)-f2(x)
单选题若一阶方程y'=f(x,y)中,f(x,y)=u(x)v(y),则它是()。A线性方程B齐次方程C变量可分离方程D恰当方程