什么是线性规划的解、可行解和最优解?

什么是线性规划的解、可行解和最优解?


相关考题:

线性规划问题最终解的情形有()。 A.可行解、最优解、基本解和无解B.可行解、基本可行解、基本解和最优解C.最优解、退化解、多重最优解和无解D.最优解、退化解、多重解和无界解

线性规划可行解、可行域、最优解的概念。

线性规划的最优解是指使目标函数达到最优的可行解。()

用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。 A 、有无穷多个最优解B 、有可行解但无最优解C 、有可行解且有最优解D 、无可行解

用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。A.有无穷多个最优解B.有可行解但无最优解C.有可行解且有最优解D.无可行解

对于线性规划问题,下列说法正确的是()A、线性规划问题可能没有可行解B、在图解法上,线性规划问题的可行解区域都是“凸”区域C、线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D、上述说法都正确

线性规划中,()不正确。A、有可行解必有可行基解B、有可行解必有最优解C、若存在最优解,则最优基解的个数不超过2D、可行域无界时也可能得到最优解

线性规划的解有唯一最优解、无穷多最优解、()和无可行解四种。

判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。

满足线性规划问题所有约束条件的解称为()。A、可行解B、基本可行解C、无界解D、最优解

线性规划可行域的顶点一定是()A、基本可行解B、非基本解C、非可行解D、最优解

线性规划问题中,下面的叙述不正确的有()。A、可行解一定存在B、可行基解必是最优解C、最优解一定存在D、最优解若存在,在可行基解中必有最优解

关于线性规划问题,叙述正确的为()。A、其可行解一定存在B、其最优解一定存在C、其可行解必是最优解D、其最优解若存在,在可行解中必有最优解

有关线性规划,()是错误的。A、当最优解多于一个时,最优解必有无穷多个B、当有可行解时必有最优解C、当有最优解时必有在可行集顶点达到的最优解D、当有可行解时必有可行基解

满足线性规划问题全部约束条件的解称为()A、最优解B、基本解C、可行解D、多重解

若线性规划问题没有可行解,可行解集是空集,则此问题()A、没有无穷多最优解B、没有最优解C、有无界解D、有无界解

线性规划问题有可行解,则()A、必有基可行解B、必有唯一最优解C、无基可行解D、无唯一最优解

问答题什么是线性规划的解、可行解和最优解?

单选题若线性规划问题没有可行解,可行解集是空集,则此问题()A没有无穷多最优解B没有最优解C有无界解D有无界解

单选题有关线性规划,()是错误的。A当最优解多于一个时,最优解必有无穷多个B当有可行解时必有最优解C当有最优解时必有在可行集顶点达到的最优解D当有可行解时必有可行基解

单选题线性规划中,()不正确。A有可行解必有可行基解B有可行解必有最优解C若存在最优解,则最优基解的个数不超过2D可行域无界时也可能得到最优解

多选题线性规划问题中,下面的叙述不正确的有()。A可行解一定存在B可行基解必是最优解C最优解一定存在D最优解若存在,在可行基解中必有最优解

填空题线性规划的解有唯一最优解、无穷多最优解、()和无可行解四种。

单选题对于线性规划问题,下列说法正确的是()A线性规划问题可能没有可行解B在图解法上,线性规划问题的可行解区域都是“凸”区域C线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D上述说法都正确

问答题线性规划问题的可行解和最优解分别是什么?

单选题线性规划问题有可行解,则()A必有基可行解B必有唯一最优解C无基可行解D无唯一最优解