若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。

若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。


相关考题:

若线性规划的可行域非空有界,则其顶点中必存在最优解。() 此题为判断题(对,错)。

● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

若线性规划问题有可行解,则一定存在基本可行解。()

互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解

若线性规划无最优解则其可行域无界基本解为空( )

对于线性规划问题,下列说法正确的是()A、线性规划问题可能没有可行解B、在图解法上,线性规划问题的可行解区域都是“凸”区域C、线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D、上述说法都正确

关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解

若线性规划问题有最优解,则最优解一定可以在可行域的顶点()达到

关于图解法,下列结论最正确的是()。A、线性规划的可行域为凸集B、线性规划的最优解一定可在凸集的一个顶点达到C、若线性规划的可行域有界,则一定有最优解D、以上都正确

判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

线性规划问题的基可行解与可行域顶点的关系是()

若线性规划无最优解则其可行域无界()

若一个线性规划问题有可行解,则他必有最优解。

互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解

线性规划问题的基可行解对应于可行域的()。

若线性规划问题的可行域是无界的,则该问题可能()A、无有限最优解B、有有限最优解C、有唯一最优解D、有无穷多个最优解E、有有限多个最优解

若线性规划模型的可行域非空有界,则其顶点中必存在最优解。

如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

若线性规划问题存在可行基,则()A、一定有最优解B、一定有可行解C、可能无可行解D、可能具有无界解

问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

多选题若线性规划问题的可行域是无界的,则该问题可能()A无有限最优解B有有限最优解C有唯一最优解D有无穷多个最优解E有有限多个最优解

单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A若原问题为无界解,则对偶问题也为无界解B若原问题无可行解,其对偶问题具有无界解或无可行解C若原问题存在可行解,其对偶问题必存在可行解D若原问题存在可行解,其对偶问题无可行解

单选题若线性规划问题存在可行基,则()A一定有最优解B一定有可行解C可能无可行解D可能具有无界解

填空题若线性规划问题有最优解,则最优解一定可以在可行域的顶点()达到

单选题关于图解法,下列结论最正确的是()。A线性规划的可行域为凸集B线性规划的最优解一定可在凸集的一个顶点达到C若线性规划的可行域有界,则一定有最优解D以上都正确

单选题对于线性规划问题,下列说法正确的是()A线性规划问题可能没有可行解B在图解法上,线性规划问题的可行解区域都是“凸”区域C线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D上述说法都正确

判断题若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。A对B错