43、低频段的开环幅相频率特性完全由()和积分环节决定。A.惯性环节B.比例环节C.微分环节D.时滞环节

43、低频段的开环幅相频率特性完全由()和积分环节决定。

A.惯性环节

B.比例环节

C.微分环节

D.时滞环节


参考答案和解析
B

相关考题:

设积分环节的传递函数为G(s)=K/s,则其频率特性幅值A() A、K/ωB、K/ω2C、1/ωD、1/ω2

幅值裕度h是由开环频率特性引出的指标。() 此题为判断题(对,错)。

()传递函数中积分环节的个数决定了系统的类型。 A、闭环B、开环C、单位闭环D、以上都不是

对于开环频率特性曲线与闭环系统性能之间的关系,以下叙述中不正确的有()。A.开环频率特性的低频段表征了闭环系统的稳定性B.中频段表征了闭环系统的动态特性C.高频段表征了闭环系统的抗干扰能力D.低频段的增益应充分大,以保证稳态误差的要求

奈奎斯特稳定性判据是利用系统的()来判据闭环系统稳定性的一个判别准则。A.开环幅值频率特性B.开环相角频率特性C.开环幅相频率特性D.闭环幅相频率特性

系统开环频率特性的几何表示方法有对数频率特性和bode图。()

乃奎斯特判据是一种应用( )来判别闭环系统稳定性的判据。A. 开环频率特性曲线B. 积分环节的对数曲线C. 相频曲线D. 零分贝线

惯性环节和积分环节的频率特性()相等。 A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率

幅相频率特性曲线与对数频率特性曲线的关系是()。A.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的-20分贝线B.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的+20分贝线C.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的零分贝线D.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的+1分贝线

开环对数频率特性的高频段决定系统的()。 A、型别B、稳态误差C、动态性能D、抗干扰能力

关于系统频域校正,下列观点错误的是()。 A、一个设计良好的系统,相角裕度应为45度左右B、开环频率特性,在中频段对数幅频特性斜率应为C、低频段,系统的开环增益主要由系统动态性能要求决定D、利用超前网络进行串联校正,是利用超前网络的相角超前特性

稳定系统的开环幅相频率特性靠近(-1,j0)点的程度表征了系统的相对稳定性,它距离(-1,j0)点越远,闭环系统相对稳定性就越()。

开环对数幅频特性曲线低频积的形状只决定于系统的开环增益K和积分环节的数目V(对最小相位系统而言)。()

时滞环节的幅相频率特性为一个以原点为圆心的圆。

系统开环频率特性的低频段,主要是由惯性环节和()环节来确定。

如何测量得到一个含积分环节的频率特性?

下列关于开环对数频率特性曲线―Bode图,说法不正确的是()A、开环对视幅频特性L(ω)低频段的斜率表征系统的类型,高度表征开环传递系数的大小B、高频段的分贝值越高,表征系统的抗干扰能力越强C、L(ω)中频段的斜率、宽度h以及截止频率ωc表征系统的动态性能D、低频段能全面表征系统稳态性能

关于系统频域校正,下列观点错误的是()A、一个设计良好的系统,相角裕度应为45度左右;B、开环频率特性,在中频段对数幅频特性斜率应为20/dBdec;C、低频段,系统的开环增益主要由系统动态性能要求决定;D、利用超前网络进行串联校正,是利用超前网络的相角超前特性

一般开环频率特性的低频段表征了闭环系统的()性能。

滞后校正网络具有低通滤波器的特性,因而当它与系统的不可变部分串联相连时,会使系统开环频率特性的中频和高频段增益降低和截止频率减小.

()的基本原理是当系统满足一定条件时,系统中非线性环节在正弦信号作用下输出可用一次谐波分量来近似,由此导出非线性环节的近似等效频率特性,表达形式上类似于线性理论中的幅相频率特性。A、相平面法B、相轨迹法C、描述函数法D、逆系统法

开环系统的频率特性与闭环系统的时间响应有关。开环系统的低频段表征闭环系统的稳定性;开环系统的中频段表征闭环系统的动态性能;开环系统的高频段表征闭环系统的()。

开环频率特性的幅值等于1所对应得频率称为();在开环频率特性的相角等于-180度的角频率上,开环频率特性的幅值的倒数称为系统的()。

惯性环节和积分环节的频率特性在()上相等。A、幅频特性的斜率B、最小幅值C、相位变化率D、穿越频率

微分环节与积分环节的对数频率特性的幅值和辐角总是()。A、大小相等B、大小不等C、方向相同D、方向相反

在频域设计中,一般地说,开环频率特性的低频段表征了闭环系统的();开环频率特性的中频段表征了闭环系统的();开环频率特性的高频段表征了闭环系统的()。

系统的开环频率特性通常是若干典型环节频率特性的乘积。

判断题时滞环节的幅相频率特性为一个以原点为圆心的圆。A对B错