设A是m×n矩阵,AX=0是AX=b的导出组,则下列结论正确的是( ).《》( )A.若AX=0仅有零解,则AX=b有唯一解B.若AX=0有非零解,则AX=b有无穷多解C.若AX=b有无穷多解,则AX=0仅有零解D.若AX=b有无穷多解,则AX=0有非零解

设A是m×n矩阵,AX=0是AX=b的导出组,则下列结论正确的是( ).《》( )

A.若AX=0仅有零解,则AX=b有唯一解
B.若AX=0有非零解,则AX=b有无穷多解
C.若AX=b有无穷多解,则AX=0仅有零解
D.若AX=b有无穷多解,则AX=0有非零解

参考解析

解析:由方程组AX=0有解,不能判定AX=b是否有解;由AX=b有唯一解,知AX=0只有零解;由AX=b由无穷多解,知AX=0有非零解.

相关考题:

设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。

设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

设A是m×n矩阵,已知Ax=0只有零解,则以下结论正确的是( )A.m≥n B.Ax=b(其中b是m维实向量)必有唯一解C.r(A)=m D.Ax=0存在基础解系

设A为矩阵,都是线性方程组Ax=0的解,则矩阵A为:

设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系B.k1ξ1+k1ξ2是Ax=0的通解C.k1ξ1+ξ2是Ax=0的通解D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:  (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)  (2)若r(A)≥r(B),则AX=0的解都是BX=0的解  (3)若AX=0与BX=0同解,则r(A)-r(B)  (4)若r(A)=r(B),则AX=0与BX=0同解  以上命题正确的是().A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

设A是m×n阶矩阵,则下列命题正确的是().A.若mB.若m>n,则方程组AX=b一定有唯一解C.若r(A)=n,则方程组AX=b一定有唯一解D.若r(A)=m,则方程组AX=b一定有解

若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解

设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:  ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);  ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;  ③若Ax=0与Bx=0同解,则秩(A)=秩(B);  ④若秩(A)=秩(B)则Ax=0与Bx=0同解;  以上命题中正确的是A.①②.B.①③.C.②④.D.③④,

设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=nB.r<nC.r≥nD.r>n

设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是:

设β1,β2是线性方程组Ax=b的两个不同的解,a1,a2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:

设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.

设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.

设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

设A是m×n矩阵,如果mA.Ax=b必有无穷多解B.Ax=b必有唯一解C.Ax=0必有非零解D.Ax=0必有唯一解

设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④

单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是(  )。A若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解

单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A①②B①③C②④D③④

问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。