如图,正方体ABCD-A1B1C1D1中,E,F,G分别为AA1,A1D1,BC的中点,则异面直线EF与D1G所成角的大小为__________。

如图,正方体ABCD-A1B1C1D1中,E,F,G分别为AA1,A1D1,BC的中点,则异面直线EF与D1G所成角的大小为__________。



参考解析

解析:连接AD1,AG,由于EF平行于AD1,则异面直线EF与D1G所成角等于AD1与D1G所成角。设正方体棱长为2,在△AD1G中,D1G=3,根据余弦定理,cos∠AD1G=

相关考题:

(Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.

(Ⅱ)求直线PB与平面PCD所成角的大小;

如图1,正方体ABCDA′B′C′D′中,EE′∥FF′∥BB′,平面AEE′A′与平面ABB′A′成15°角,平面AFF′A′与平面ADD′A′成30°角.如果正方体的棱长为1,那么几何体AEF A′E′F′的体积等于____.

如右图,正四面体P-ABC的棱长为口,D、E、F分别为棱PA、PB、PC的中点,G、H、M分别为DE、EF、FD的中点,则三角形GHM的面积与正四面体P-ABC的表面积之比为:A.1:8B.1:16C.1:32D.1:64

如图,正四面体P-ABC的棱长为a,D、E、F分别为PA、PB、PC的中点,G、H、M 分别为DE,EF,FD的中点,则三角形GHM的面积与正四面体P-ABC的表面积之比为( )。A. 1 : 8B. 1 : 16C. 1 : 32D. 1 : 64

如右图所示,一个边长为10厘米的正方体木块ABCD-A1B1C1D1,点E、F分别是BC、A1B1的中点,C1E是用蜂蜜画的一条线段,一只蚂蚁在点F处,要想沿正方体表面最快到达蜂蜜所在线段C1E,它所爬行的最短距离是多少厘米?

在棱长为1的正方体上切下两个角,所形成的两个截面为大小相等的正三角形。两个角组成了一个六面体,六面体体积为原正方体体积的1/24,则六面体表面积为原正方体表面积的:A.1/4B.1/6C.1/8D.1/10

如图,AB是⊙O的直径,AC是弦,直线EF和⊙O相切与点C,AD⊥EF,垂足为D。 (1)若 ∠DAC=63°,求∠BAC;(5分) (2)若把直线EF向上平行移动,如图,直线EF交 ⊙O于G和C两点,若题中的其他条件不变,这时与∠DAC相等的角是哪一个 为什么 (5分)

如图,正方体ABCD-A1B1C1D1的棱长为1cm,则三棱锥C-AB1D1的体积是:

在正方体ABCD-A1B1C1D1中,E,F分别为AD,D1D的中点,则直线EF与BD1所成角的正弦值是()

如图6-6所示,D,E是△.ABC中BC边的三等分点,F是AC的中点,AD与EF交于O,则OF:OE=( )A.1/2B.1/3C.3/4D.9/10E.2/3

如图所示,有一束平行于等边三棱镜截面ABC的单色光从空气射向E点,并偏折到F点。已知入射方向与边AB的夹角为θ=30。,E、F分别为边AB、BC的中点,则(  )。

正方体ABCD-A'B'C'D'中,侧面对角线AC与BC'所成的角等于( )。A. 90。 B. 60。C. 45。 D. 30。

(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示)。

如图,Rt△ABC中,AB=6,BC=4,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为__________。

如图,正方体ABCD-A1B1C1D1中,求BB1与平面C1DB所成角的正切值为_________。

如图,已知四棱锥P-ABCD底面ABCD为矩形,侧棱PA⊥ABCD,AB=AP=21/2AD=2,E,F分别为PC,AB的中点。 (I)证明:EF∥面PAD。 (II)求三棱锥B-PFC的体积。

(10分)如图,几何体A1B1C1-ABC中,AB=AC,AB⊥AC,棱AA1,BB1,CC1都垂直于面ABC,BC=AA1=2BB1=2CC1=4,D为B1C1的中点,E为A1D的中点。 求证:(1)AE⊥BC;(3分) (2)求异面直线AE与DC所成角的余弦值。(7分)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90o,E是CD的中点。 (1)证明:CD⊥平面PAE; (2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

填空题直线l与平面α所成的角为40°,a是α内任意一条直线,则l与a所成的最大角是____,最小角是____.