如果从无向图的任一顶点出发进行一次DFS遍历即可访问所有顶点,则该图一定是A.完全图B.连通图C.有回路D.一棵树
如果从无向图的任一顶点出发进行一次DFS遍历即可访问所有顶点,则该图一定是
A.完全图
B.连通图
C.有回路
D.一棵树
参考答案和解析
连通图
相关考题:
● 若无向连通图 G 具有 n个顶点,则以下关于图 G的叙述中,错误的是(43)。(43)A.G 的边数一定多于顶点数B.G 的生成树中一定包含 n个顶点C.从 G 中任意顶点出发一定能遍历图中所有顶点D.G 的邻接矩阵一定是n阶对称矩阵
阅读下列算法说明和算法,将应填入(n)处的语句写在对应栏内。1. 【说明】实现连通图G的深度优先遍历(从顶点v出发)的非递归过程。【算法】第一步:首先访问连通图G的指定起始顶点v;第二步:从V出发,访问一个与v(1)p,再从顶点P出发,访问与p(2)顶点q,然后从q出发,重复上述过程,直到找不到存在(3)的邻接顶点为止。第三步:回退到尚有(4)顶点,从该顶点出发,重复第二、三步,直到所有被访问过的顶点的邻接点都已被访问为止。因此,在这个算法中应设一个栈保存被(5)的顶点,以便回溯查找被访问过顶点的未被访问过的邻接点。
● 对连通图进行遍历前设置所有顶点的访问标志为 false(未被访问) ,遍历图后得到一个遍历序列,初始状态为空。深度优先遍历的含义是:从图中某个未被访问的顶点 v 出发开始遍历,先访问 v 并设置其访问标志为 true(已访问) ,同时将 v 加入遍历序列,再从 v 的未被访问的邻接顶点中选一个顶点,进行深度优先遍历;若 v的所有邻接点都已访问,则回到 v 在遍历序列的直接前驱顶点,再进行深度优先遍历,直至图中所有顶点被访问过。 (40) 是下图的深度优先遍历序列。(40)A. 1 2 3 4 6 5B. 1 2 6 3 4 5C. 1 6 2 5 4 3D. 1 2 3 4 5 6
以下关于图的遍历的叙述中,正确的是(61)。A.图的遍历是从给定的源点出发对每一个顶点仅访问一次的过程B.图的深度优先遍历方法不适用于无向图C.使用队列对图进行广度优先遍历D.图中有回路时则无法进行遍历
阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 图是很多领域中的数据模型,遍历是图的一种基本运算。从图中某顶点v出发进行广度优先遍历的过程是: ①访问顶点v; ②访问V的所有未被访问的邻接顶点W1 ,W2 ,..,Wk; ③依次从这些邻接顶点W1 ,W2 ,..,Wk出发,访问其所有未被访问的邻接顶点;依此类推,直到图中所有访问过的顶点的邻接顶点都得到访问。 显然,上述过程可以访问到从顶点V出发且有路径可达的所有顶点。对于从v出发不可达的顶点u,可从顶点u出发再次重复以上过程,直到图中所有顶点都被访问到。 例如,对于图4-1所示的有向图G,从a出发进行广度优先遍历,访问顶点的一种顺序为a、b、c、e、f、d。设图G采用数组表示法(即用邻接矩阵arcs存储),元素arcs[i][j]定义如下:图4-1的邻接矩阵如图4-2所示,顶点a~f对应的编号依次为0~5.因此,访问顶点a的邻接顶点的顺序为b,c,e。 函数BFSTraverse(Graph G)利用队列实现图G的广度优先遍历。 相关的符号和类型定义如下: define MaxN 50 /*图中最多顶点数*/ typedef int AdjMatrix[MaxN][MaxN]; typedef struct{ int vexnum, edgenum; /*图中实际顶点数和边(弧)数*/ AdjMatrix arcs; /*邻接矩阵*/ )Graph; typedef int QElemType; enum {ERROR=0;OK=1}; 代码中用到的队列运算的函数原型如表4-1所述,队列类型名为QUEUE。 表4-1 实现队列运算的函数原型及说明【代码】 int BFSTraverse(Graph G) {//对图G进行广度优先遍历,图采用邻接矩阵存储 unsigned char*visited; //visited[]用于存储图G中各顶点的访问标志,0表示未访问 int v, w, u; QUEUEQ Q; ∥申请存储顶点访问标志的空间,成功时将所申请空间初始化为0 visited=(char*)calloc(G.vexnum, sizeof(char)); If( (1) ) retum ERROR; (2) ; //初始化Q为空队列 for( v=0; vG.vexnum; v++){ if(!visited[v]){ //从顶点v出发进行广度优先遍历 printf(%d,v); //访问顶点v并将其加入队列 visited[v]=1; (3) ; while(!isEmpty(Q)){ (4) ; //出队列并用u表示出队的元素 for(w=0;vG.vexnum; w++){ if(G.arcs[u][w]!=0 (5) ){ //w是u的邻接顶点且未访问过 printf(%d, w); //访问顶点w visited[w]=1; EnQueue(Q, w); } } } } free(visited); return OK; )//BFSTraverse
试题四(共 15 分)阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。【说明】 图是很多领域中的数据模型,遍历是图的一种基本运算。从图中某顶点 v出发进行广度优先遍历的过程是:①访问顶点 v;②访问 V 的所有未被访问的邻接顶点 W1 ,W2 ,..,Wk;③依次从这些邻接顶点 W1 ,W2 ,..,Wk 出发,访问其所有未被访问的邻接顶 点;依此类推,直到图中所有访问过的顶点的邻接顶点都得到访问。显然,上述过程可以访问到从顶点 V 出发且有路径可达的所有顶点。对于 从 v 出发不可达的顶点 u,可从顶点 u 出发再次重复以上过程,直到图中所有顶 点都被访问到。例如,对于图 4-1 所示的有向图 G,从 a 出发进行广度优先遍历,访问顶点 的一种顺序为 a、b、c、e、f、d。图 4-1设图 G 采用数组表示法(即用邻接矩阵 arcs 存储),元素 arcs[i][ j]定义如下: 图 4-1 的邻接矩阵如图 4-2 所示,顶点 a~f 对应的编号依次为 0~5.因此,访问顶点 a 的邻接顶点的顺序为 b,c,e。函数 BFSTraverse(Graph G)利用队列实现图 G 的广度优先遍历。相关的符号和类型定义如下:#define MaxN:50 /*图中最多顶点数*/ typedef int AdjMatrix[MaxN][MaxN];typedef struct{int vexnum,edgenum;/*图中实际顶点数和边(弧)数*/ AdjMatrix arcs; /*邻接矩阵*/)Graph;typedef int QElemType; enum {ERROR=0;OK=l};代码中用到的队列运算的函数原型如表 4-1 所述,队列类型名为 QUEUE。表 4-1 实现队列运算的函数原型及说明 【代码】int BFSTraverse(Graph G){//图 G 进行广度优先遍历,图采用邻接矩阵存储unsigned char*visited; //visited[]用于存储图 G 中各顶点的访问标 志,0 表示未访问int v,w;u; QUEUEQ Q;∥申请存储顶点访问标志的空间,成功时将所申请空间初始化为 0 visited=(char*)calloc(G.vexnum, sizeof(char));If( (1) ) retum ERROR; (2) ; //初始化 Q 为空队列 for( v=0; v } free(visited);return OK;)//BFSTraverse从下列的 2 道试题(试题五至试题六)中任选 1 道解答。请在答题纸上的 指定位置处将所选择试题的题号框涂黑。若多涂或者未涂题号框,则对题号最小 的一道试题进行评分。
阅读下列说明和?C?代码,回答问题?1?至问题?2,将解答写在答题纸的对应栏内。【说明】一个无向连通图?G?点上的哈密尔顿(Hamiltion)回路是指从图?G?上的某个顶点出发,经过图上所有其他顶点一次且仅一次,最后回到该顶点的路劲。一种求解无向图上哈密尔顿回路算法的基础私下如下:假设图?G?存在一个从顶点?V0?出发的哈密尔顿回路?V1——V2——V3——...——Vn-1——V0。算法从顶点?V0?出发,访问该顶点的一个未被访问的邻接顶点?V1,接着从顶点?V1?出发,访问?V1?一个未被访问的邻接顶点?V2,..。;对顶点?Vi,重复进行以下操作:访问?Vi?的一个未被访问的邻接接点?Vi+1;若?Vi?的所有邻接顶点均已被访问,则返回到顶点?Vi-1,考虑Vi-1?的下一个未被访问的邻接顶点,仍记为?Vi;知道找到一条哈密尔顿回路或者找不到哈密尔顿回路,算法结束。【C?代码】下面是算法的?C?语言实现。(1)常量和变量说明n :图?G?中的顶点数c[][]:图?G?的邻接矩阵K:统计变量,当期已经访问的定点数为?k+1x[k]:第?k?个访问的顶点编号,从?0?开始Visited[x[k]]:第?k?个顶点的访问标志,0?表示未访问,1?表示已访问⑵C?程序【问题?1】(10?分)根据题干说明。填充?C?代码中的空(1)~(5)。【问题?2】(5?分)根据题干说明和?C?代码,算法采用的设计策略为( ),该方法在遍历图的顶点时,采用的是(?)方法(深度优先或广度优先)。
判断题对任意一个图,从某顶点出发进行一次深度优先或广度优先遍历,可访问图的所有顶点。A对B错