若从无向图的一个顶点出发进行深度优先遍历可访问到图中的所有顶点,则 该图一定是连通图。() 此题为判断题(对,错)。
如果从无向图的某个顶点出发,进行一次广度优先搜索,可访问到图的每个顶点,则该图一定是()图。
● 若无向连通图 G 具有 n个顶点,则以下关于图 G的叙述中,错误的是(43)。(43)A.G 的边数一定多于顶点数B.G 的生成树中一定包含 n个顶点C.从 G 中任意顶点出发一定能遍历图中所有顶点D.G 的邻接矩阵一定是n阶对称矩阵
● 邻接矩阵和邻接表是图(网)的两种基本存储结构,对于具有 n个顶点、e条边的图, (59) 。(59)A. 进行深度优先遍历运算所消耗的时间与采用哪一种存储结构无关B. 进行广度优先遍历运算所消耗的时间与采用哪一种存储结构无关C. 采用邻接表表示图时,查找所有顶点的邻接顶点的时间复杂度为O(n*e)D. 采用邻接矩阵表示图时,查找所有顶点的邻接顶点的时间复杂度为O(n2)
广度优先遍历的含义是:从图中某个顶点v出发,在访问了v之后依次访问v的各个未被访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,且“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。(38)是下图的广度优先遍历序列。A.1 2 6 34 5B.1 2 34 5 6C.1 6 5 2 34D.1 64 52 3
阅读下列函数说明和C函数,将应填入(n)处的字句写在对应栏内。[说明]邻接表是图的一种顺序存储与链式存储结合的存储方法。其思想是:对于图G中的每个顶点 vi,将所有邻接于vi的顶点vj连成一个单链表,这个单链表就称为顶点vi的邻接表,其中表头称作顶点表结点VertexNode,其余结点称作边表结点EdgeNode。将所有的顶点表结点放到数组中,就构成了图的邻接表AdjList。邻接表表示的形式描述如下: define MaxVerNum 100 /*最大顶点数为100*/typedef struct node{ /*边表结点*/int adjvex; /*邻接点域*/struct node *next; /*指向下一个边表结点的指针域*/ }EdgeNode;typedef struct vnode{ /*顶点表结点*/int vertex; /*顶点域*/EdgeNode *firstedge; /*边表头指针*/}VertexNode;typedef VertexNode AdjList[MaxVerNum]; /*AdjList是邻接表类型*/typedef struct{AdjList adjlist; /*邻接表*/int n; /*顶点数*/}ALGraph; /*ALGraph是以邻接表方式存储的图类型*/深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。下面的函数利用递归算法,对以邻接表形式存储的图进行深度优先搜索:设初始状态是图中所有顶点未曾被访问,算法从某顶点v出发,访问此顶点,然后依次从v的邻接点出发进行搜索,直至所有与v相连的顶点都被访问;若图中尚有顶点未被访问,则选取这样的一个点作起始点,重复上述过程,直至对图的搜索完成。程序中的整型数组visited[]的作用是标记顶点i是否已被访问。[函数]void DFSTraverseAL(ALGraph *G)/*深度优先搜索以邻接表存储的图G*/{ int i;for(i=0;i<(1);i++) visited[i]=0;for(i=0;i<(1);i++)if((2)) DFSAL(G,i);}void DFSAL(ALGraph *G,int i) /*从Vi出发对邻接表存储的图G进行搜索*/{ EdgeNode *p;(3);p=(4);while(p!=NULL) /*依次搜索Vi的邻接点Vj*/{ if(! visited[(5)]) DFSAL(G,(5));p=p->next; /*找Vi的下一个邻接点*/}}
图的遍历要求从图的某一顶点出发,访遍图中的其余顶点,且每个顶点仅被访问一次。() 此题为判断题(对,错)。
一个连通图采用邻接表作为存储结构,设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。
图的遍历是从图中的某个顶点出发,按照某种搜索策略访问图中所有顶点且每个顶点仅访问一次。() 此题为判断题(对,错)。
阅读下列算法说明和算法,将应填入(n)处的语句写在对应栏内。1. 【说明】实现连通图G的深度优先遍历(从顶点v出发)的非递归过程。【算法】第一步:首先访问连通图G的指定起始顶点v;第二步:从V出发,访问一个与v(1)p,再从顶点P出发,访问与p(2)顶点q,然后从q出发,重复上述过程,直到找不到存在(3)的邻接顶点为止。第三步:回退到尚有(4)顶点,从该顶点出发,重复第二、三步,直到所有被访问过的顶点的邻接点都已被访问为止。因此,在这个算法中应设一个栈保存被(5)的顶点,以便回溯查找被访问过顶点的未被访问过的邻接点。
在有向图的邻接表表示中,顶点v在边单链表中出现的次数是()。 A.顶点v的度B.顶点v的出度C.顶点v的入度D.依附于顶点v的边数
若从无向图的一个顶点出发进行广度优先遍历可访问到图中的所有顶点,则该图一定是连通图。() 此题为判断题(对,错)。
若从无向图的一个顶点出发进行深度优先遍历可访问到图中所有顶点,则该图一定是连通图。() 此题为判断题(对,错)。
若从无向图的一个顶点出发进行广度优先遍历可访问到图中所有顶点,则该图一定是连通图。() 此题为判断题(对,错)。
● 对连通图进行遍历前设置所有顶点的访问标志为 false(未被访问) ,遍历图后得到一个遍历序列,初始状态为空。深度优先遍历的含义是:从图中某个未被访问的顶点 v 出发开始遍历,先访问 v 并设置其访问标志为 true(已访问) ,同时将 v 加入遍历序列,再从 v 的未被访问的邻接顶点中选一个顶点,进行深度优先遍历;若 v的所有邻接点都已访问,则回到 v 在遍历序列的直接前驱顶点,再进行深度优先遍历,直至图中所有顶点被访问过。 (40) 是下图的深度优先遍历序列。(40)A. 1 2 3 4 6 5B. 1 2 6 3 4 5C. 1 6 2 5 4 3D. 1 2 3 4 5 6
对于连通无向图G,以下叙述中,错误的是( )。A. G 中任意两个顶点之间存在路径 B. G 中任意两个顶点之间都有边 C. 从 G 中任意顶点出发可遍历图中所有顶点 D. G的邻接矩阵是对称的
试题四(共 15 分)阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。【说明】 图是很多领域中的数据模型,遍历是图的一种基本运算。从图中某顶点 v出发进行广度优先遍历的过程是:①访问顶点 v;②访问 V 的所有未被访问的邻接顶点 W1 ,W2 ,..,Wk;③依次从这些邻接顶点 W1 ,W2 ,..,Wk 出发,访问其所有未被访问的邻接顶 点;依此类推,直到图中所有访问过的顶点的邻接顶点都得到访问。显然,上述过程可以访问到从顶点 V 出发且有路径可达的所有顶点。对于 从 v 出发不可达的顶点 u,可从顶点 u 出发再次重复以上过程,直到图中所有顶 点都被访问到。例如,对于图 4-1 所示的有向图 G,从 a 出发进行广度优先遍历,访问顶点 的一种顺序为 a、b、c、e、f、d。图 4-1设图 G 采用数组表示法(即用邻接矩阵 arcs 存储),元素 arcs[i][ j]定义如下: 图 4-1 的邻接矩阵如图 4-2 所示,顶点 a~f 对应的编号依次为 0~5.因此,访问顶点 a 的邻接顶点的顺序为 b,c,e。函数 BFSTraverse(Graph G)利用队列实现图 G 的广度优先遍历。相关的符号和类型定义如下:#define MaxN:50 /*图中最多顶点数*/ typedef int AdjMatrix[MaxN][MaxN];typedef struct{int vexnum,edgenum;/*图中实际顶点数和边(弧)数*/ AdjMatrix arcs; /*邻接矩阵*/)Graph;typedef int QElemType; enum {ERROR=0;OK=l};代码中用到的队列运算的函数原型如表 4-1 所述,队列类型名为 QUEUE。表 4-1 实现队列运算的函数原型及说明 【代码】int BFSTraverse(Graph G){//图 G 进行广度优先遍历,图采用邻接矩阵存储unsigned char*visited; //visited[]用于存储图 G 中各顶点的访问标 志,0 表示未访问int v,w;u; QUEUEQ Q;∥申请存储顶点访问标志的空间,成功时将所申请空间初始化为 0 visited=(char*)calloc(G.vexnum, sizeof(char));If( (1) ) retum ERROR; (2) ; //初始化 Q 为空队列 for( v=0; v } free(visited);return OK;)//BFSTraverse从下列的 2 道试题(试题五至试题六)中任选 1 道解答。请在答题纸上的 指定位置处将所选择试题的题号框涂黑。若多涂或者未涂题号框,则对题号最小 的一道试题进行评分。
对于连通无向图 G,以下叙述守,错误的是(43)A.G 中任意两个顶点之间存在路径 B.G 中任意两个顶点之间都有边C.从 G 中任意顶点出发可遍历图中所有顶点D.G 的邻接矩阵是对称的
阅读下列说明和C代码,回答问题1至问题2,将解答写在答题纸的对应栏内。【说明】一个无向连通图G点上的哈密尔顿(Hamiltion)回路是指从图G上的某个顶点出发,经过图上所有其他顶点一次且仅一次,最后回到该顶点的路径。哈密尔顿回路算法的基础如下:假设图G存在一个从顶点V0出发的哈密尔顿回路V1--V2--V3--...--Vn-1--V0。算法从顶点V0出发,访问该顶点的一个未被访问的邻接顶点V1,接着从顶点V1出发,访问V1一个未被访问的邻接顶点V2,..。;对顶点Vi,重复进行以下操作:访问Vi的一个未被访问的邻接接点Vi+1;若Vi的所有邻接顶点均已被访问,则返回到顶点Vi-1,考虑Vi-1的下一个未被访问的邻接顶点,仍记为Vi;直到找到一条哈密尔顿回路或者找不到哈密尔顿回路,算法结束。【C代码】下面是算法的C语言实现。(1)常量和变量说明n :图G中的顶点数c[][]:图G的邻接矩阵K:统计变量,当前已经访问的顶点数为k+1x[k]:第k个访问的顶点编号,从0开始Visited[x[k]]:第k个顶点的访问标志,0表示未访问,1表示已访问(2)C程序#include #include #define MAX 100voidHamilton(intn,int x[MAX,intc[MAX][MAX]){int;int visited[MAX];int k;/*初始化 x 数组和 visited 数组*/for (i=0:i=0){x[k]=x[k]+1;while(x[k]【问题1】(10分)根据题干说明。填充C代码中的空(1)~(5)。【问题2】(5分)根据题干说明和C代码,算法采用的设计策略为( ),该方法在遍历图的顶点时,采用的是( )方法(深度优先或广度优先)。
对于具有n个顶点、6条边的图()。A.采用邻接矩阵表示图时,查找所有顶点的邻接顶点的时间复杂度为O(n2)B.进行广度优先遍历运算所消耗的时间与采用哪一种存储结构无关C.采用邻接表表示图时,查找所有顶点的邻接顶点的时间复杂度为O(n*e)D.进行深度优先遍历运算所消耗的时间与采用哪一种存储结构无关
调用一次深度优先遍历可以访问到图中的所有顶点。()
阅读下列说明和?C?代码,回答问题?1?至问题?2,将解答写在答题纸的对应栏内。【说明】一个无向连通图?G?点上的哈密尔顿(Hamiltion)回路是指从图?G?上的某个顶点出发,经过图上所有其他顶点一次且仅一次,最后回到该顶点的路劲。一种求解无向图上哈密尔顿回路算法的基础私下如下:假设图?G?存在一个从顶点?V0?出发的哈密尔顿回路?V1——V2——V3——...——Vn-1——V0。算法从顶点?V0?出发,访问该顶点的一个未被访问的邻接顶点?V1,接着从顶点?V1?出发,访问?V1?一个未被访问的邻接顶点?V2,..。;对顶点?Vi,重复进行以下操作:访问?Vi?的一个未被访问的邻接接点?Vi+1;若?Vi?的所有邻接顶点均已被访问,则返回到顶点?Vi-1,考虑Vi-1?的下一个未被访问的邻接顶点,仍记为?Vi;知道找到一条哈密尔顿回路或者找不到哈密尔顿回路,算法结束。【C?代码】下面是算法的?C?语言实现。(1)常量和变量说明n :图?G?中的顶点数c[][]:图?G?的邻接矩阵K:统计变量,当期已经访问的定点数为?k+1x[k]:第?k?个访问的顶点编号,从?0?开始Visited[x[k]]:第?k?个顶点的访问标志,0?表示未访问,1?表示已访问⑵C?程序【问题?1】(10?分)根据题干说明。填充?C?代码中的空(1)~(5)。【问题?2】(5?分)根据题干说明和?C?代码,算法采用的设计策略为( ),该方法在遍历图的顶点时,采用的是(?)方法(深度优先或广度优先)。
如图若从顶点a出发按广度优先搜索法进行遍历,则可能得到的顶点序列为()。 AacebdfghBaebcghdfCaedfbcghDabecdfgh
若从无向图中任意一个顶点出发进行1次深度优先搜索便可以访问到该图的所有顶点,则该图一定是一个()。A、非连通图B、强连通图C、连通图D、完全图
对任意一个图,从某顶点出发进行一次深度优先或广度优先遍历,可访问图的所有顶点。
如果从一无向图的任意顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是()。
判断题对任意一个图,从某顶点出发进行一次深度优先或广度优先遍历,可访问图的所有顶点。A对B错