对矩阵A施行一次初等列变换,相当于在矩阵A的左边乘以相应的初等矩阵。

对矩阵A施行一次初等列变换,相当于在矩阵A的左边乘以相应的初等矩阵。


参考答案和解析
错误

相关考题:

初等变换是指____。 A.交换某两行(列)B.某行(列)乘以k倍C.将某行(列)的k倍加到另一行(列)

两个初等矩阵的乘积仍是初等矩阵。() 此题为判断题(对,错)。

用一初等矩阵左乘一矩阵B,等于对B施行相应的()变换。 A、行变换B、列变换C、既不是行变换也不是列变换

复合变换矩阵为多个基本变换矩阵的差。 ( ) 此题为判断题(对,错)。

高斯消去法是对增广矩阵(A|b)进行一系列的初等行变换。() 此题为判断题(对,错)。

阐述求逆矩阵的初等行变换方法。

阐述矩阵乘法的运算过程。并用矩阵乘积形式表示如下线性方程组。 用初等变换的方法求解上述线性方程组。

矩阵A( )时可能改变其秩.A.转置:B.初等变换:C.乘以奇异矩阵:D.乘以非奇异矩阵.

初等矩阵( )A.都可以经过初等变换化为单位矩阵B.所对应的行列式的值都等于1C.相乘仍为初等矩阵D.相加仍为初等矩阵

下列矩阵中,( )不是初等矩阵。

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=C:B.C.A总可以经过初等变换化为单位矩阵E:D.以上都不对.

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=CB.C.A总可以经过初等变换化为单位矩阵ED.以上都不对

N阶矩阵A经过若干次初等变换化为矩阵B,则().A.|A|=|B|B.|A|≠|B|C.若|A|=0则|B|=0D.若|A|>0则|B|>0

设A为m×n阶矩阵,且r(A)=mAA的任意m个列向量都线性无关BA的任意m阶子式都不等于零C非齐次线性方程组AX=b一定有无穷多个解D矩阵A通过初等行变换一定可以化为

设,用初等行变换的方法求A的逆矩阵.然后据此将A分解成初等矩阵的乘积.

利用矩阵的初等变换,求方阵的逆

已知a是常数,且矩阵可经初等列变换化为矩阵.  (Ⅰ)求a;  (Ⅱ)求满足AP=B的可逆矩阵P.

已知二次型f(x1,x2,3x)=x^TAx在正交变换x=Qy下的标准形为,且Q的第3列为.  (Ⅰ)求矩阵A;  (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵.

设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有( ).《》( )

矩阵A在( )时秩改变.A.转置B.初等变换C.乘以奇异矩阵D.乘以非奇异矩阵

二维图形变换使用了齐次坐标表示法,其变换矩阵是()。A、2×2矩阵B、3×3矩阵C、4×4矩阵D、5×5矩阵

在齐次坐标系中,若用矩阵来表示各种运算,则比例和旋转变换是矩阵乘法运算,而平移变换是矩阵加法运算。

矩阵的组合特性是矩阵乘法满足结合率,不满足交换率,即进行连续变换时一定要按变换次序对变换矩阵求积后才得到总的变换矩阵。

简述AES算法的正变换矩阵比逆变换矩阵简单的原因。

如果视野将矩阵完全填充,且像素不是正方形,则像素的宽度等于()A、视野的宽度除以矩阵的行数B、视野的高度除以矩阵的列数C、视野的宽度除以矩阵的列数D、视野的高度除以矩阵的行数E、视野的高度乘以矩阵的行数

判断题矩阵的组合特性是矩阵乘法满足结合率,不满足交换率,即进行连续变换时一定要按变换次序对变换矩阵求积后才得到总的变换矩阵。A对B错

单选题如果视野将矩阵完全填充,且像素不是正方形,则像素的宽度等于(  )。A视野的高度除以矩阵的行数B视野的宽度除以矩阵的行数C视野的宽度除以矩阵的列数D视野的高度除以矩阵的列数E视野的高度乘以矩阵的行数

单选题矩阵A在(  )时秩改变。A转置B初等变换C乘以奇异矩阵D乘以非奇异矩阵