大量相互独立的随机变量,无论各个随机变量服从什么分布,只要它们满足某种条件,那么它们的和近似服从正态分布.

大量相互独立的随机变量,无论各个随机变量服从什么分布,只要它们满足某种条件,那么它们的和近似服从正态分布.


参考答案和解析
正确

相关考题:

多个相互独立随机变量的________将服从或近似服从正态分布。A.方差B.标准差C.平均值D.置信区间

设随机变量X和Y相互独立,且都服从标准正态分布,则:P(X+Y≥0)=()。

设随机变量和是相互独立的随机变量且都服从正态分布,X~N(3,4),Y~N(2,9),求D(3X+4Y)=()

关于中心极限定理,下列说法正确的是( )。A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B.几个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值X近似服从正态分布N(μ,σ2/n)C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值X的分布总近似于正态分布D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ,σ2),则样本均值X仍为正态分布,其均值不变仍为μ,方差为σ2/n

若随机变量X服从正态分布N(a,b),随机变量Y服从正态分布N(c,d),则X+Y所服从的分布为正态分布。() 此题为判断题(对,错)。

如果随机变量X服从均值为2,方差为9的正态分布,随机变量Y服从均值为5,方差为16的正态分布,X与Y的相关系数为0.5,那么X+2Y所服从的分布是: ( )。A.均值为12,方差为100的正态分布B.均值为12,方差为97的正态分布C.均值为10,方差为100的正态分布D.不再服从正态分布

设Xi(i=1,2,…,n)为n个相互独立的随机变量,则下列结论成立的是( )。A.若Xi(i=1,2,…,n)服从正态分布,且分布参数相同,则服从正态分布B.若Xi(i=1,2,…,n)服从指数分布,且λ相同,则服从正态分布C.若Xi(i=1,2,…,n)服从[a,b]上的均匀分布,则服从正态分布D.无论Xi(i=1,2,…,n)服从何种相同的分布,其均值都服从正态分布

设Xi (i=1,2,…,n)为n个相互独立的随机变量,则下列结论成立的是( )。A.若Xi (i=1,2,…,n)服从正态分布,且分布参数相同,则服从正态分布B.若Xi (i=1,2,…,n)服从指数分布,且λ相同,则服从正态分布C.若Xi(i=1,2,…,n)服从[a,b)上的均匀分布,则服从正态分布D.无论Xi (i=1,2,…,n)服从何种分布,其均值都服从正态分布

设随机变量X和Y都服从正态分布,则().A.X+Y一定服从正态分布B.(X,Y)一定服从二维正态分布C.X与Y不相关,则X,Y相互独立D.若X与Y相互独立,则X-Y服从正态分布

设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则

关于中心极限定理,下列说法正确的是( )。A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B. n个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值近似服从正态分布N(μ, σ2/n)C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值的分布总近似于正态分布D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ, σ2)则样本均值仍为正态分布,其均值不变仍为μ,方差为 σ2/n

已知随机变量X服从正态分布N(μ,σ2),设随机变量Y=2X,那么Y服从的分布是()。A.N(2μ,2σ2)B.N(4μ,4σ2)C.N(2μ,4σ2)D.N(μ,σ2)

T~N(μσ2)就可以断定这个随机变量近似地服从正态分布。

多元线性回归分析中,要求的条件有()。A、应变量y是服从正态分布的随机变量B、自变量间相互独立C、残差是均数为0,方差为常数、服从正态分布的随机变量D、残差间相互独立,且与p个自变量之间独立E、自变量均服从正态分布

已知随机变量X和Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)()。A、3B、6C、10D、12

中心极限定理的一般意义是:无论随机变量服从何种分布,只要样本容量足够大,都可以近似地看作是服从()。A、正态分布B、t分布C、F分布D、X2分布

若随机变量,从中随机抽取样本,则服从的分布为()。A、标准正态分布B、近似正态分布C、t分布D、F分布

关于中心极限定理的描述正确的是:()。A、对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B、正态样本均值服从分布N(μ,σ2/n)C、设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D、无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布

设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().A、正态分布N(3,9)B、均匀分布C、正态分布N(1,9)D、指数分布

如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立。

判断题T~N(μσ2)就可以断定这个随机变量近似地服从正态分布。A对B错

单选题如果X是服从正态分布的随机变量,则exp(x)服从(  )。A正态分布Bc2分布Ct分布D对数正态分布

多选题关于中心极限定理的描述正确的是:()。A对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B正态样本均值服从分布N(μ,σ2/n)C设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布

判断题如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立。A对B错

单选题设随机变量X和Y都服从正态分布,则(  )。AX+Y一定服从正态分布BX和Y不相关与独立等价C(X,Y)一定服从正态分布D(X,-Y)未必服从正态分布

多选题多元线性回归分析中,要求的条件有()。A应变量y是服从正态分布的随机变量B自变量间相互独立C残差是均数为0,方差为常数、服从正态分布的随机变量D残差间相互独立,且与p个自变量之间独立E自变量均服从正态分布

单选题中心极限定理的一般意义是:无论随机变量服从何种分布,只要样本容量足够大,都可以近似地看作是服从()。A正态分布Bt分布CF分布DX2分布

单选题随机变量X、Y都服从正态分布且不相关,则它们(  )。A一定独立B(X,Y)一定服从二维正态分布C未必独立DX+Y服从一维正态分布