向量组 a=(1,2,3),b=(4,1,0),c=(1,-1,5)线性无关,则向量组a1=(2,1,3),b1=(1,4,0), c1=(-1,1,5)线性无关

向量组 a=(1,2,3),b=(4,1,0),c=(1,-1,5)线性无关,则向量组a1=(2,1,3),b1=(1,4,0), c1=(-1,1,5)线性无关


参考答案和解析
线性无关

相关考题:

线性方程组Ax=o只有零解的充分必要条件是() A、A的行向量组线性无关B、A的行向量组线性相关C、A的列向量组线性无关D、A的列向量组线性相关

设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是()。 A、a1-a2,a2-a3,a3-a1B、a1,a2,a3+a1C、a1,a2,2a1-3a2D、a2,a3,2a2+a3

设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

设a1,a2,3向量组线性无关,则下列向量组线性相关的是( )

设向量组Ⅰ可由向量组Ⅱ:线性表示,下列命题正确的是( )A.若向量组Ⅰ线性无关,则r≤sB.若向量组Ⅰ线性相关,则r大于sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r小于s

若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关

3维向量组A:a1,a2,…,am线性无关的充分必要条件是( ).A.对任意一组不全为0的数k1,k2,…,km,都有k1a1+k2a2+…+kmam≠0B.向量组A中任意两个向量都线性无关C.向量组A是正交向量组D.

设a1,a2,a3均为3维向量,则对任意常数k,l,向量组线性无关是向量组a1,a2,a3线性无关的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件

求向量组的秩和一个极大线性无关组,并把其余向量用此极大线性无关组线性表示。

已知四维列向量线性无关,则下列向量组中线性无关的是

设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s

设线性无关的向量组线性表出,则必有( )。

设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )A.A的列向量组线性无关B.方程组AX=b有无穷多解C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关D.A的任意4个列向量构成的向量组线性无关

A.必定r<sB.向量组中任意个数小于r的部分组线性无关C.向量组中任意r个向量线性无关D.若s>r则向量组中任r+l个向量必线性相关

单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C向量组α1,…,αm与向量组β1,…,βm等价D矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

单选题设A为4×5矩阵,且A的行向量组线性无关,则(  )。AA的列向量组线性无关B方程组AX(→)=b(→)有无穷多解C方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关DA的任意4个列向量构成的向量组线性无关

单选题设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。A必定r<sB向量组中任意个数小于r的部分组线性无关C向量组中任意r个向量线性无关D若s>r,则向量组中任意r+l个向量必线性相关

填空题已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.

单选题下列说法不正确的是(  )。As个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关Bs个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关Cs个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关Ds个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关

问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

单选题设向量组的秩为r,则:()A该向量组所含向量的个数必大于rB该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C该向量组中有r个向量线性无关,有r+1个向量线性相关D该向量组中有r个向量线性无关,任何r+1个向量必线性相关

单选题设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则(  ).A(Ⅰ)是(Ⅱ)的极大线性无关组Br(Ⅰ)=r(Ⅱ)C当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)

单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价