设x是某个体域Ω中的个体,F(x)和G(x)都是关于x的命题,则对命题∃x(F(x)∨G(x))的理解正确的是____。A.存在一个x∈Ω,使得F(x)为真或G(x)为真B.存在一个x∈Ω,使得F(x)为真且G(x)为真C.对所有x∈Ω,命题F(x)为真或G(x)为真D.对所有x∈Ω,命题F(x)为真且G(x)为真
设x是某个体域Ω中的个体,F(x)和G(x)都是关于x的命题,则对命题∃x(F(x)∨G(x))的理解正确的是____。
A.存在一个x∈Ω,使得F(x)为真或G(x)为真
B.存在一个x∈Ω,使得F(x)为真且G(x)为真
C.对所有x∈Ω,命题F(x)为真或G(x)为真
D.对所有x∈Ω,命题F(x)为真且G(x)为真
参考答案和解析
A
相关考题:
设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。 A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)
(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是(A)若f(x) 是偶函数,则f(-x)是偶函数(B)若f(x)不是奇函数,则f(-x)不是奇函数(C)若f(-x)是奇函数,则f(x)是奇函数(D)若f(-x)不是奇函数,则f(x)不是奇函数
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x)B.f(x)g(a)>f(a)g(x)C.f(x)g(x)>f(b)g(b)D.f(x)g(x)>f(a)g(a)
设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()A、deg(f(x)g(x))B、deg(f(x)g(x))>max{degf(x),degg(x)}C、deg(f(x)+g(x))>max{degf(x),degg(x)}D、deg(f(x)+g(x))=max{degf(x),degg(x)}
下列命题中,正确的是().A、若在区间(a,B.内有f(x)g(x),则f’(x)g’(x),x∈(a,B.B、若在区间(a,B.内有f’(x)g’(x),则f(x)g(x),x∈(a,B.C、C.若f’(x)在(a,内单调,则f(x)在(a,B.内也单调D、D.若在区间(a,B.内有f’(x)g’(x),且f=gA.,则f(x)g(x),x∈(a,B.
设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。A、F(x)+C也是f(x)的原函数,C为任意常数B、F(x)=G(x)+C,C为任意常数C、F(x)=G(x)+C,C为某个常数D、F’(x)=G’(x)
设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A、f(x)=g(f(x))B、g(x)=f(f(x))C、f(x)=g(x)D、g(x)=f(g(x))
带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?()A、无数多对B、两对C、唯一一对D、根据F[x]而定
单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。[2018年真题]Af(x)/g(x)>f(a)/g(b)Bf(x)/g(x)>f(b)/g(b)Cf(x)g(x)>f(a)g(a)Df(x)g(x)>f(b)g(b)
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
单选题设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。AF(x)+C也是f(x)的原函数,C为任意常数BF(x)=G(x)+C,C为任意常数CF(x)=G(x)+C,C为某个常数DF’(x)=G’(x)
单选题下列命题中,正确的是().A若在区间(a,B.内有f(x)g(x),则f’(x)g’(x),x∈(a,B.B若在区间(a,B.内有f’(x)g’(x),则f(x)g(x),x∈(a,B.CC.若f’(x)在(a,内单调,则f(x)在(a,B.内也单调DD.若在区间(a,B.内有f’(x)g’(x),且f=gA.,则f(x)g(x),x∈(a,B.