(19)(本题满分14分)设a1,d为实数,首项为a1,z差为d的等差数{an}的前n项和为Sn,满足S5S6+15=0.(Ⅰ)若S5=5.求S6及a1;

(19)(本题满分14分)设a1,d为实数,首项为a1,z差为d的等差数{an}的前n项和为Sn,满足S5S6+15=0.

(Ⅰ)若S5=5.求S6及a1;


相关考题:

已知等差数列{an}的首项与公差相等,{an)的前n项的和记作Sn,且S20=840.(I)求数列{an}的首项a1及通项公式;(Ⅱ)数列{an}的前多少项的和等于847.

设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9= 。

已知等差数列{an}中,a1=21,Sn是它的前n项之和,S7=S15。 (1)求Sn; (2)这个数列的前多少项之和最大 求出最大值。

已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.(Ⅰ)设bn=an+1-2an,求证:数列{bn)是等比数列;(Ⅱ)设求证:数列{cn}是等差数列;(Ⅲ)求数列{an}的通项公式及前n项和.

等差数列前n项和为210,其中前4项和为40,后4项的和为80,则n的值为( )A.10B.12C.14D.16E.18

案例: 在等差数列的习题课教学中,教师布置了这样一个问题:等差数列前10项和为100,前100项和为10,求前110项的和。 两位学生的解法如下: 学生甲:设等差数列的首项为a1,公差为d,则针对上述解法,一些学生提出了自己的想法。(1)请分析学生甲和学生乙解法各自的特点,并解释学生乙设的理由。(12分) (2)请验证(*)中结论是否成立。(8分)

案例: 在等差数列的习题课教学中,教师布置了这样一个问题:等差数列前10项和为100,前100项和为10,求前110项的和。 两位学生的解法如下: 学生甲:设等差数列的首项为a1,公差为d,则学生乙:设等差数列针对上述解法,一些学生提出了自己的想法。(1)请分析学生甲和学生乙解法各自的特点,并解释学生乙设的理由。(12分) (2)请验证(*)中结论是否成立。

(10分)已知数列{an}满足a1=3,an+1= an +2n, (1)求{ an }的通项公式an; (2)若bn=n an,求数列{bn}的前n项和sn。

(10分)已知数列{an}的前n项和Sn=2n+1-k(其中k为常数): (1)求数列{ an }的通项公式;(4分) (2)若a1=2,求数列{n an }的前n项和Tn。(6分)