正规方程指误差方程按最小二乘法原理转化得到的有确定解的代数方程组。

正规方程指误差方程按最小二乘法原理转化得到的有确定解的代数方程组。


相关考题:

设线性方程组AX=b有唯一解,则相应的齐次方程组AX=0解的情况是()。 A.有非零解B.只有零解C.无解D.解不能确定

潮流方程是() A.代数方程B.微分方程C.代数方程组D.微分方程组

牛顿-拉夫逊迭代法的基本原理是用泰勒级数展开非线性方程组,略去二阶及以上的高阶项得到线性修正方程组,通过一次求解修正方程组和修正未知量就可得到未知量的精确解。() 此题为判断题(对,错)。

非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解.B.r=n时,方程组Ax=b有唯一解.C.m=n时,方程组Ax=b有唯一解.D.r

设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

给出线性方程组下述结论错误的是(  )。A.λ≠1,λ≠-2时,方程组有唯一解B.λ=-2时,方程组无解C.λ=1时,方程组有无穷多解D.λ=2时,方程组无解

非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。A 当r=m时,方程组AX=b有解B 当r=n时,方程组AX=b有惟一解C 当m=n时,方程组AX=b有惟一解D 当r<n时,方程组AX=b有无穷多解

已知是线性方程组的解, 是它的导出组的解,求方程组的通解。

讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.

已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解

已知方程组(I)(II)图1} (1)a,b取什么值时这两个方程组同解?此时求解. (2)a,b取什么值时这两个方程组有公共解? 此时求公共解{

已知下列非齐次线性方程组(Ⅰ),(Ⅱ)    (1)求解方程组(Ⅰ),用其导出组的基础解系表示通解.  (2)当方程组中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.

设线性方程组与方程有公共解,求a的值及所有公共解

采用对流换热边界层微分方程组、积分方程组或雷诺类比法求解,对流换热过程中,正确的说法是(  )。A. 微分方程组的解是精确解B. 积分方程组的解是精确解C. 雷诺类比的解是精确解D. 以上三种均为近似解

已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

设线性方程组问方程组何时无解,有唯一解,有无穷多解,有无穷多解时,求出其全部解。

非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).A.r=m时,方程组AX=b有解B.r=n时,方程组AX=b有唯一解C.m=m时,方程组AX=b有唯一解D.r<n时,方程组AX=b有无穷多解

传递函数是由代数方程组通过消去系统中间变量得到的。

什么是正规方程组。

解环方程组的基本原理是什么?

正规方程指测量误差方程。

描写动态系统的数学模型是()A、微分方程B、代数方程组C、常系数线性微分方程组D、以上答案都不对

潮流方程是()。A、代数方程B、微分方程C、代数方程组D、微分方程组

问答题设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

单选题潮流方程是()。A代数方程B微分方程C代数方程组D微分方程组

单选题采用对流换热边界层微分方程组,积分方程组或雷诺类比法求解对流换热过程中,正确的说法是( )。A微分方程组的解是精确解B积分方程组的解是精确解C雷诺类比的解是精确解D以上三种均为近似值

单选题非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。Ar=m时,方程组AX(→)=b(→)有解Br=n时,方程组AX(→)=b(→)有唯一解Cm=n时,方程组AX(→)=b(→)有唯一解Dr<n时,方程组AX(→)=b(→)有无穷多解