已知生产函数为Q =f(K,L)=KL -0. 5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,若K =10,求: (1)写出劳动的平均产量和边际产量函数。 (2)计算当总产量达到极大值时企业雇佣的劳动人数。
已知生产函数为Q =f(K,L)=KL -0. 5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,若K =10,求: (1)写出劳动的平均产量和边际产量函数。 (2)计算当总产量达到极大值时企业雇佣的劳动人数。
参考解析
解析:代入K =10,有Q=10L -0. 5L2—32。 (1)劳动的平均产量函数为APL= 10 -0.5L-32/L.劳动的边际产量函数为MP1=10 -L。 (2)要使总产量达到极大值,由MPL =0,可得L=10.
相关考题:
计算题:假定某厂商只有一种可变要素劳动L,产出一种产品Q,固定成本为既定,短期生产函数Q=-0。1L3+6L2+12L,求:(1)劳动的平均产量AP为最大值时的劳动人数(2)劳动的边际产量MP为最大值时的劳动人数(3)平均可变成本极小值时的产量
假定L单位的劳动力和K单位的资本相结合可以生产Q单位的产品,则生产函数可表示为Q=F(L,K),如果和L和K都增加X倍,产量为Q时,即当A=X时说明()A.规模收益递减B.规模收益不变C.规模收益递增D.不能确定
已知某企业的生产函数Q=L2/3K1/3 ,劳动的价格W=2,资本的价格r=1,求:(1)当成本C=3000时,企业实现最大产量时的L、K和Q的值。(2)当产量Q=800时,企业实现最少成本时的L、K和C的值。
生产函数Q=f(L,K)的要素组合与产量的对应图,如图所示,这张图是以坐标平面的形式编制的。其中,横轴和纵轴分别表示劳动投入量和资本投入量,虚线交点上的数字表示与该点的要素投入组合对应的产量。(1)图中是否存在规模报酬递增、不变和递减?(2)图中是否存在边际报酬递减?(3)图中哪些要素组合处于同一条等产量曲线上?
已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产,且K=10,求:(1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。(2)分别计算当总产量TPL、劳动平均产量APL和劳动边际产量MPL各自达到极大值时的厂商劳动的投入量。(3)什么时候APL=MPL?它的值又是多少?
已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产切K的平均数为10 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、关于劳动的平均产量APL函数和关于劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到最大值时的厂商的劳动投入量。 (3)什么时候APL= MPL?它的值又是多少?
已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。
已知某企业的生产函数为Q=,L^(2/3)K^(1/3),劳动的价格,w=2,资本的价格r =1:求 (1)当成本C=3000时,企业实现最大产量时的L、K和Q的均衡值。 (2)当产量Q=800时,企业实现最小成本时的L、K和C的均衡值:
设生产函数为柯布道格拉斯函数Q=L^(1/3)K^(2/3),己知劳动力和资本的价格分别是w=1和r =2, (1)该生产函数代表了哪种类型的规模收益? (2)设企业的生产成本为3000,求两种要素的投入数量与总产量。 (3)设企业的生产产量为800,求两种要素的投入数量与企业所需付出的成本。
已知生产函数为Q= KL -0.5L2-0.32K2;其中,Q表示产量,K表示资本.L表示劳动,令式中K=10,求: (1)写出劳动的平均产量(APPL)函数和边际产量(MPPL)函数。 (2)分别计算当总产量、平均产量和边际产量达到极大值时厂商雇佣的劳动。 (3)求上述条件下厂商总产量、平均产量和边际产量的极大值。
给定CES生产函数Q=(KP+LP)^(1/p),Q为产出,K、L分别为资本和劳动的投入量。 (1)证明该企业规模收益不变。 (2)资本和劳动的边际产量为多少? (3)劳动对资本的边际技术替代率是多少? (4)证明资本和劳动的产出弹性之和等于1。 (5)把这个企业分为两个相同的企业,分立之后的产出之和与原企业的产出有什么变化?详细写出演算过程。
某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?
假定L单位的劳动力和K单位的资本相结合可以生产Q单位的产品,则生产函数可表示为Q=F(L,K),如果和L和K都增加X倍,产量为Q时,即当A=X时说明()A、规模收益递减B、规模收益不变C、规模收益递增D、不能确定
已知生产函数Q=f(L,K)=4KL-L2-0.25K2,假定厂商目前处于短期生产,且K=20。 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到极大值时的厂商的劳动投入量。 (3)什么时候APL=MPL?它的值又是多少?
已知某企业的生产函数为Q=50L^(3/5)K^(3/5)(Q为产量,L为劳动,K为资本),则()A、生产函数为规模报酬递增B、生产函数为规模报酬递减C、生产函数为规模报酬不变D、生产要素报酬递增E、生产要素报酬递减
问答题假定某公司甲的生产函数为:Q=10K0.5L0.5;另一家公司乙的生产函数为:Q=10K0.6L0.4。其中Q为产量,K和L分别为资本和劳动的投入量。 (1)如果两家公司使用同样多的资本和劳动,哪一家公司的产量大? (2)如果资本的投入限于9单位,而劳动的投入没有限制,哪家公司劳动的边际产量更大?
问答题已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求: (1)劳动的投入函数L=L(Q); (2)总成本函数、平均成本函数和边际成本函数; (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?
问答题已知生产函数为Q=min(L,4K)。试求:(1)当产量Q=32时,L与K值分别是多少?(2)如果生产要素的价格分别为PL=2,Pk=5,则生产100单位产量时的最小成本是多少?