设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的行向量组与矩阵B的列向量组等价

设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )


A.矩阵C的行向量组与矩阵A的行向量组等价
B.矩阵C的列向量组与矩阵A的列向量组等价
C.矩阵C的行向量组与矩阵B的行向量组等价
D.矩阵C的行向量组与矩阵B的列向量组等价


参考解析

解析:

相关考题:

设A,B均为n阶矩阵,(I一B)可逆,则矩阵方程A+BX=X的解X=()。

设A,B均为n阶可逆矩阵,求证:(AB)*=B*A*。

设A、B、C均为n阶矩阵,则下列结论或等式成立的是()。 A、(AB)^2=A^2B^2B、若AB=AC且A≠0,则B=CC、((A+B)C)^T=C^T(B^T+A^T)D、若A≠0且B≠0,则AB≠0

设A和B均为n阶矩阵,则必有( )。A.|A+B|=|A|+|B|B.AB=BAC.|AB|=|BA|D.

设A,B为n阶矩阵,则下列结论正确的是().A.若A,B可逆,则A+B可逆B.若A,B可逆,则AB可逆C.若A+B可逆,则A-B可逆D.若A+B可逆,则A,B都可逆

设A,B为同阶可逆矩阵,则( )。A.AB=BAB.C.D.存在可逆矩阵P和Q,使PAQ=B

设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵B.设A,B可逆,则A^-1+B^-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵

设A,B为n阶可逆矩阵,则().

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=C:B.C.A总可以经过初等变换化为单位矩阵E:D.以上都不对.

设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>mB.r=mC.rD.r≥m

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=A.EB.-EC.AD.-A

设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的行向量组与矩阵B的列向量组等价

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=CB.C.A总可以经过初等变换化为单位矩阵ED.以上都不对

设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。

设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

设A,B都是n阶矩阵,AB+E可逆.证明BA+E也可逆,并且.

设n阶矩阵A可逆,且detA=a,求,.

证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.

设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价

设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆B.E-A不可逆,E+A可逆C.E-A可逆,E+A可逆D.E-A可逆,E+A不可逆

设a为N阶可逆矩阵,则( ).《》( )

均为n阶可逆矩阵,则=( )。A.B.A+BC.D.

设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*