设消费函数为Yi=β0+β1D+β2Xi+ui,式中Yi=第i个居民的消费水平,Xi=第i个居民的收入水平,D为虚拟变量,D=1表示正常年份,D=0表示非正常年份,则()A、该模型为截距、斜率同时变动模型B、该模型为截距变动模型C、该模型为分布滞后模型D、该模型为时间序列模型
设消费函数为Yi=β0+β1D+β2Xi+ui,式中Yi=第i个居民的消费水平,Xi=第i个居民的收入水平,D为虚拟变量,D=1表示正常年份,D=0表示非正常年份,则()
- A、该模型为截距、斜率同时变动模型
- B、该模型为截距变动模型
- C、该模型为分布滞后模型
- D、该模型为时间序列模型
相关考题:
下列方程并判断模型()属于系数呈线性。 A、Yi=β0+βiXi3+μiB、Yi=β0+βilogXi+uiβC、logYi=β0+βilogXi+μiD、Yi=β0+β1(β2Xi)+μiE、Yi=β0/(βiXi)+uiF、Yi=1+β0(1Xiβ1)+μiG、Yi=β0+β1X1i+β2X2i+μi
DW检验的假设条件有( )。Ⅰ.回归模型不含有滞后自变量作为解释变量Ⅱ.随机扰动项,满足μi=ρμi-1+viⅢ.方回归模型含有不为零的截距项Ⅳ.回归模型不含有滞后因变量作为解释变量A:Ⅱ.Ⅲ.ⅣB:Ⅰ.Ⅱ.ⅣC:Ⅰ.Ⅱ.ⅢD:Ⅰ.Ⅱ.Ⅳ
设消费函数为Yi=β0+β1D+β2Xi+ui,Yi=第i个居民的消费水平,Xi=第i个居民的收入水平,D为虚拟变量,该模型为()A、截距、斜率同时变动模型B、系统变参数模型的特殊情况。C、截距变动模型D、斜率变动模型E、分段回归
在线性回归模型Yi=β1+β2X2i+β2X3i+ui中,β1表示()A、指所有未包含到模型中来的变量对Y的平均影响。B、Yi的平均水平。C、X2i,X3i不变的条件下,Yi的平均水平。D、X2i=0,X3i=0时,Yi的真实水平。
一元线性回归模型Yi=β0+β1Xi+μi的最小二乘回归结果显示,残差平方和RSS=40.32,样本容量n=25,则回归模型的标准差σ为()。A、1.270B、1.324C、1.613D、1.753
假设某需求函数为Yi=β0+β1Xi+μi,为了考虑“季节”因素(春、夏、秋、冬四个不同的状态),引入4个虚拟变量形成截距变动模型,则模型的()。A、参数估计量将达到最大精度B、参数估计量是有偏估计量C、参数估计量是非一致估计量D、参数将无法估计
一元线性回归模型Yi=β0+β1Xi+μi的基本假定包括()。A、E(μi)=0B、Var(μi)=σ2C、Cov(μi,μj)(i≠j)D、μi~N(0,1)E、X为非随机变量,且Cov(Xiμi)=0
对于模型Yi=β0+β1Xi+μi,为了考虑“地区”因素(北方、南方),引入2个虚拟变量形成截距变动模型,则会产生()。A、序列的完全相关B、序列的不完全相关C、完全多重共线性D、不完全多重共线性
单选题在一个包含截距项的回归模型Yi=β0+β1D+β2Xi+ui中,如果一个具有m个特征的质的因素引入m个虚拟变量,则会产生的问题为()A异方差B序列相关C不完全多重线性相关D完全多重线性相关
多选题设消费函数为Yi=β0+β1D+β2Xi+ui,Yi=第i个居民的消费水平,Xi=第i个居民的收入水平,D为虚拟变量,该模型为()A截距、斜率同时变动模型B系统变参数模型的特殊情况。C截距变动模型D斜率变动模型E分段回归
单选题设消费函数为Yi=β0+β1D+β2Xi+ui,式中Yi=第i个居民的消费水平,Xi=第i个居民的收入水平,D为虚拟变量,D=1表示正常年份,D=0表示非正常年份,则()A该模型为截距、斜率同时变动模型B该模型为截距变动模型C该模型为分布滞后模型D该模型为时间序列模型
单选题一元线性回归模型的总体回归直线可表示为( )。[2016年5月真题]AE(yi)=α+βxiBy(∧)i=α(∧)+β(∧)xiCyi=α(∧)+β(∧)xi+eiDyi=α+βxi+mi