设计动压向心滑动轴承时,若发现最小油膜厚度不够大,在下列改进措施中,最有效的是()。 A.增大相对间隙B.增大供油量C.减少轴承的宽径比D.换用粘度较低的润滑油

设计动压向心滑动轴承时,若发现最小油膜厚度不够大,在下列改进措施中,最有效的是()。

A.增大相对间隙

B.增大供油量

C.减少轴承的宽径比

D.换用粘度较低的润滑油


相关考题:

当液体动压滑动轴承的主轴转速增高、主轴与轴瓦的间隙减小时,油膜压力()。 A、不变B、减小C、增大

动压轴承的油膜承载能力与()无关。 A.速度B.轴承大小C.油楔结构D.润滑油的粘度

润滑油黏度增大,对滑动轴承产生的影响为()。A、黏度愈大,进入轴承的油量减少,油膜承载能力下降B、黏度愈大,进入轴承的油量增多,油膜承载能力增大C、黏度愈大,进入轴承油分布不均匀,减小摩擦损失D、黏度愈大,进入轴承油流动阻力增加,摩擦损失增大

设计动压向心滑动轴承时,若发现最小油膜厚度hmin不够大,在下列改进措施中,最有效的是  ()A、增大相对间隙B、增大供油量C、减小轴承的宽径比B/dD、换用粘度较低的润滑油

试述动压润滑形成的必要条件及最小油膜厚度hmin对向心动压轴承工作特性的影响。

液体动压向心滑动轴承,若向心外载荷不变,减小相对间隙ψ ,则承载能力()A、增大B、减小C、不变

润滑油温较低时,油的粘度将增大,油膜变厚。()

旋转机械发生半速涡动或油膜振荡时,可以采取下面措施()抑制A、增大轴承比压,减小轴承间隙比B、减小轴承间隙比C、减小轴承比压,增大轴承间隙比D、增大轴承间隙比及轴承比压

对于滑动轴承,在高负荷下为了保证油膜的必要厚度,应选用粘度()的润滑油。A、较低B、没有要求C、较高D、无法确定

动压滑动轴承形成液体油摩擦的最小油膜厚度主要受到()限制。A、轴瓦材料B、轴颈和轴瓦的表面粗糙度C、润滑油粘度D、轴颈尺寸大小

采用三油楔或多油楔滑动轴承的目的在于:()A、增大油楔数量,提高承载能力。B、增加轴承间隙中的润滑油流量,改善轴承发热C、提高轴承的稳定性和旋转精度D、增加产生流体动压润滑油膜的面积,减小轴承摩擦

设计动压向心滑动轴承时,若通过热平衡计算发现轴承温升过高,在下列改进设计措施中,有效的是()A、增大轴承的宽径比B/dB、减小供油量C、增大相对间隙D、换用粘度较高的油

旋转机械产生油膜振荡时,可采取()提高润滑油温度等措施消除。A、减少轴承比压B、增大轴承比压C、减少轴承间隙比D、增大轴承间隙比

在符合滑动轴承动压润滑油膜形成的必要条件的两板中,其间隙越小,承受外载的能力越大。

计液体动力润滑径向滑动轴承时,若发现最小油膜厚度hmin不够大,在下列改进设计的措施中,最有效的是()A、减少轴承的宽径比B、增加供油量C、减少相对间隙D、增大偏心率

在滑动轴承中,相对间隙是一个重要的参数,它是()与公称直径之比。A、半径间隙B、直径间隙C、最小油膜厚度hminD、偏心率

液体动压润滑轴承轴颈在轴承中的位置,可由()两个参数来确定。A、轴颈半径和最小油膜厚度B、相对间隙和偏心率C、相对间隙和偏心距D、偏心距和偏位角

设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度hmin不够大,在下列改进设计的措施中,最有效的是() 。A、 减少轴承的宽径比l/dB、 增加供油量C、 减少相对间隙ψD、 增大偏心率χ

液体动压润滑的必要条件是什么?简述向心滑动轴承形成动压油膜的过程?

在滑动轴承中,相对间隙ψ是一个重要的参数,它是()与公称直径之比。A、 半径间隙δ=R-rB、 直径间隙△=D-dC、 最小油膜厚度hminD、 偏心率χ

在滑动轴承中,当轴颈与轴瓦间的间隙之间润滑膜厚度达到()值时,油膜的压力()。A、最小、最大B、最大、最大C、最小、最小D、最大、最小

油膜的最小厚度是随着轴承负荷的()、润滑油温度的()、润滑油粘度的()和汽轮机转速的()而增大的。

在一定的油膜厚度下,承载能力随着相对间隙的增大而(),随着轴承宽径比的增大而().

液体摩擦动压向心滑动轴承中,承载量系数CP是()的函数。A、偏心率χ与相对间隙ψB、相对间隙ψ与宽径比l/dC、偏心率χ与宽径比B/dD、润滑油粘度η、轴承公称直径d与偏心率χ

单选题采用三油楔或多油楔滑动轴承的目的在于()A增大油楔数量,提高承载能力。B增加轴承间隙中的润滑油流量,改善轴承发热C提高轴承的稳定性和旋转精度D增加产生流体动压润滑油膜的面积,减小轴承摩擦

单选题动压滑动轴承形成液体油摩擦的最小油膜厚度主要受到()限制。A轴瓦材料B轴颈和轴瓦的表面粗糙度C润滑油粘度D轴颈尺寸大小

单选题设计动压向心滑动轴承时,若发现最小油膜厚度hmin不够大,在下列改进措施中,最有效的是  ()A增大相对间隙B增大供油量C减小轴承的宽径比B/dD换用粘度较低的润滑油