单选题每次把待排序方的区间划分为左、右两个区间,其中左区间中元素的值不大于基准元素的值,右区间中元素的值不小于基准元素的值,此种排序方法叫做()。A冒泡排序B堆排序C快速排序D归并排序

单选题
每次把待排序方的区间划分为左、右两个区间,其中左区间中元素的值不大于基准元素的值,右区间中元素的值不小于基准元素的值,此种排序方法叫做()。
A

冒泡排序

B

堆排序

C

快速排序

D

归并排序


参考解析

解析: 暂无解析

相关考题:

快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了()算法设计策略。 A.分治B.动态规划C.贪心D.回溯

通过设置基准(枢轴)元素将待排序的序列划分为两个子序列,使得其一个子序列的元素均不大于基准元素,另一个子序列的元素均不小于基准元素,然后再分别对两个子序列继续递归地进行相同思路的排序处理,这种排序方法称为()。 A、快速排序B、冒泡排序C、简单选择排序D、归并排序

在快速排序过程中,每次划分,将被划分的表(或子表)分成左、右两个子表,考虑这两个子表,下列结论一定正确的是________。A.左、右两个子表都已各自排好序B.左边子表中的元素都不大于右边子表中的元素C.左边子表的长度小于右边子表的长度D.左、右两个子表中元素的平均值相等

阅读以下说明和 C 代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数作为基准值,然后根据基准值进行划分,从而将待排序列划分为不大于基准值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和右子序列分别进行快速排序, 最终得到非递减的有序序列。 函数 quicksort(int a[],int n)实现了快速排序,其中,n 个整数构成的待排序列保存在数组元素 a[0]-a[n-1]中。【C 代码】 include stdio.h void quicksort(int a[] ,int n) { int i ,j; int pivot = a[0]; //设置基准值 i =0; j = n-l; while (i j) { while (ij (1)) j-- //大于基准值者保持在原位置 if (ij) { a[i]=a[j]; i++;} while (i,j (2)) i++; //不大于基准值者保持在原位置 if (ij) { a[j]=a[i]; j--;} } a[i] = pivot; //基准元素归位 if ( i1) (3) ; //递归地对左子序列进行快速排序 if ( n-i-11 ) (4) ; //递归地对右子序列进行快速排序 } int main () { int i,arr[ ] = {23,56,9,75,18,42,11,67}; quicksort ( (5) ); //调用 quicksort 对数组 arr[ ]进行排序 for( i=0; isizeof(arr) /sizeof(int); i++ ) printf( %d\t ,arr[i]) ; return 0; }

阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 下面的程序利用快速排序中划分的思想在整数序列中找出第k小的元素(即将元素从小到大排序后,取第k个元素)。 对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数作为基准值,然后根据基准值进行划分,从而将待排序的序列划分为不大于基准值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和右子序列分别进行快速排序,最终得到非递减的有序序列。 例如,整数序列19, 12, 30, 11,7,53, 78, 25的第3小元素为12。整数序列19,12,7,30,11,11,7,53,78,25,7的第3小元素为7。 函数partition(int a[ ], int low,int high)以a[low]的值为基准,对a[low]、a[low+1]、、 a[high]进行划分,最后将该基准值放入a[i] (lowihigh),并使得a[low]、a[low+1]、,..、 A[i-1]都小于或等于a[i],而a[i+1]、a[i+2]、..、a[high]都大于a[i]。 函教findkthElem(int a[],int startIdx,int endIdx,inr k)在a[startIdx]、a[startIdx+1]、...、a[endIdx]中找出第k小的元素。【代码】 include stdio.h include stdlib.h Int partition(int a [ ],int low, int high) {//对 a[low..high]进行划分,使得a[low..i]中的元素都不大于a[i+1..high]中的元素。 int pivot=a[low]; //pivot表示基准元素 Int i=low,j=high; while(( 1) ){ While(ija[j]pivot)--j; a[i]=a[j] While(ija[i]=pivot)++i; a[j]=a[i] } (2) ; //基准元素定位 return i; } Int findkthElem(int a[ ],int startIdx,int endIdx, int k) {//整数序列存储在a[startldx..endldx]中,查找并返回第k小的元素。 if (startldx0 ||endIdx0 || startIdxendIdx || k1 ||k-1endIdx ||k-1startIdx) Return-1; //参数错误 if(startIdxendldx){ int loc=partition(a, startIdx, endldx); ∥进行划分,确定基准元素的位置 if (loc==k-1) ∥找到第k小的元素 return (3) ; if(k-1 loc) //继续在基准元素之前查找 return findkthElem(a, (4) ,k); else //继续在基准元素之后查找 return findkthElem(a, (5) ,k); } return a[startIdx]; } int main() { int i, k; int n; int a[] = {19, 12, 7, 30, 11, 11, 7, 53, 78, 25, 7}; n= sizeof(a)/sizeof(int) //计算序列中的元素个数 for (k=1;k<n+1;k++){ for(i=0;i<n;i++){ printf(%d/t,a[i]); } printf(\n); printf(elem %d=%d\n,k,findkthElem(a,0,n-1,k));//输出序列中第k小的元素 } return 0; }

快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了 (61) 算法设计策略。已知确定基准元素操作的时间复杂度为,则快速排序算法的最好和最坏情况下的时间复杂度为 (62) 。A.分治B.动态规划C.贪心D.回溯

快速排序算法是,在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了 ( ) 算法设计策略。已知确定着基准元素操作的时间复杂度为O(n),则快速排序算法的最好和最坏情况下的时间复杂度为 (请作答此空) 。A.O(n)和O(nlgn)B.O(n)和O(n2)C.O(nlgn)和O(nlgn)D.O(nlgn)和O(n2)

快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了(请作答此空)算法设计策略。已知确定基准元素操作的时间复杂度为Θ(n),则快速排序算法的最好和最坏情况下的时间复杂度为( )。A.分治B.动态规划C.贪心D.回溯

快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了( )算法设计策略。已知确定基准元素操作的时间复杂度为Θ(n),则快速排序算法的最好和最坏情况下的时间复杂度为(请作答此空)。

阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。【说明】下面的程序利用快速排序中划分的思想在整数序列中找出第 k 小的元素(即 将元素从小到大排序后,取第 k 个元素)。对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数 作为基准值,然后根据基准值进行划分,从而将待排序的序列划分为不大于基准 值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和 右子序列分别进行快速排序,最终得到非递减的有序序列。例如,整数序列“19, 12, 30, 11,7,53, 78, 25"的第 3 小元素为 12。整数序列“19, 12,7,30, 11, 11,7,53. 78, 25, 7"的第 3 小元素为 7。函数 partition(int a[], int low,int high)以 a[low]的值为基准,对 a[low]、 a[low+l]、…、a[high]进行划分,最后将该基准值放入 a[i] (low≤i≤high),并 使得 a[low]、a[low+l]、,..、A[i-1]都小于或等于 a[i],而 a[i+l]、a[i+2]、..、 a[high]都大于 a[i]。函 教 findkthElem(int a[],int startIdx,int endIdx,inr k) 在 a[startIdx] 、 a[startIdx+1]、...、a[endIdx]中找出第 k 小的元素。【代码】#include #include Int partition(int a [],int low, int high){//对 a[low..high]进行划分,使得 a[low..i]中的元素都不大于 a[i+1..high]中的 元素。int pivot=a[low]; //pivot 表示基准元素 Int i=low,j=high;while(( 1) ){While(ipivot)--j; a[i]=a[ j] While(ipivot)++i; a[ j]=a[i]}(2) ; //基准元素定位 return i;}Int findkthElem(int a[],int startIdx,int endIdx, int k){//整数序列存储在 a[startldx..endldx]中,查找并返回第 k 小的元素。if (startldxendIdx || kendIdx||k-1 if (loc==k-1) ∥找到第 k 小的元素return (3) ;if(k-l 小的元素}return 0;}

通过设置基准(枢轴)元素将待排序的序列划分为两个子序列,使得其一个子序列的元素均不大于基准元素,另一个子序列的元素均不小于基准元素,然后再分别对两个子序列继续递归地进行相同思路的排序处理,这种排序方法称为( )。A.快速排序B.冒泡排序C.归并排序D.简单选择排序

下列薪酬区间渗透度公式,正确的是()A.(实际基本薪酬-区间最高值)/(区间最高值-区间最低值)B.(实际基本薪酬-区间最低值)/(区间最高值-区间最低值)C.(实际基本薪酬+区间最低值)/(区间最高值-区间最低值)D.(实际基本薪酬-区间最低值)/(区间最高值+区间最低值)

下列哪个公式是正确的()。A.薪酬区间渗透度=(实际基本薪酬-区间最高值)/(区间最高值-区间最低值)B.薪酬区间渗透度=(实际基本薪酬-区间最低值)/(区间最高值-区间最低值)C.薪酬区间渗透度=(实际基本薪酬+区间最低值)/(区间最高值-区间最低值)D.薪酬区间渗透度=(实际基本薪酬-区间最低值)/(区间最高值+区间最低值)

薪酬区间渗透度是员工的实际基本薪酬与区间的实际跨度之间的关系,它的计算公式是().A:薪酬区间渗透度=(实际基本薪酬-区间最低值)/(区间最高值-区间最低值)B:薪酬区间渗透度=(实际基本薪酬-区间最高值)/(区间最高值-区间最低值)C:薪酬区间渗透度=(实际基本薪酬-区间最低值)/(区间最高值+区间最低值)D:薪酬区间渗透度=(实际摹本薪酬-区间最高值)/(区间最高值+区间最低值)

快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了(61)算法设计策略。已知确定着基准元素操作的时间复杂度为O(n),则快速排序算法的最好和最坏情况下的时间复杂度为(62)。A.O(n)和O(nlgn)B.O(n)和O(n2)C.O(nlgn)和O(nlgn)D.O(nlgn)和O(n2)

快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了(61)算法设计策略。已知确定着基准元素操作的时间复杂度为O(n),则快速排序算法的最好和最坏情况下的时间复杂度为(62)。A.分治B.动态规划C.贪心D.回溯

快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了()算法设计策略。A、分治B、动态规划C、贪心D、回溯

每次把待排序的区间划分为左、右两个子区间,其中左区间中记录的关键字均小于等于基准记录的关键字,右区间中记录的关键字均大于等于基准记录的关键字,这种排序称为()。A、堆排序B、归并排序C、插入排序D、快速排序

在对n个元素进行快速排序的过程中,若每次划分得到的左、右两个子区间中元素的个数相等或只差一个,则整个排序过程得到的含两个或两个元素的区间个数大致为()A、nB、n/2C、log2nD、2n

在对n个元素进行快速排序的过程中,若每次划分得到左、右两个子区间中元素的个数相等或只差一个,则整个排序过程得到的含有两个或两个元素的区间个数大致为()A、nB、2nC、n/2D、log2n

次把待排序的区间划分为左、右两个子区间,其中左区间中记录的关键字均小于等于基准记录的关键字,右区间中记录的关键字均大于等于基准记录的关键字,这种排序称为()。A、堆排序B、插入排序C、快速排序D、归并排序

冒泡排序算法中降序排序指的是()A、从高到低排列数组元素值B、从低到高排列数组元素的值C、由横向到纵向排列数组元素的值D、由纵向到横向排列数组元素的值

切片选取的区间是左闭右()型的,不包含结束位的值。

单选题在对n个元素进行快速排序的过程中,若每次划分得到左、右两个子区间中元素的个数相等或只差一个,则整个排序过程得到的含有两个或两个元素的区间个数大致为()AnB2nCn/2Dlog2n

填空题在快速排序方法中,进行每次划分时,是从当前待排序区间的()向()依次查找出处于逆序的元素并交换之,最后将基准元素交换到一个确定位置,从而以该位置把当前区间划分为前后两个子区间。

单选题次把待排序的区间划分为左、右两个子区间,其中左区间中记录的关键字均小于等于基准记录的关键字,右区间中记录的关键字均大于等于基准记录的关键字,这种排序称为()。A堆排序B插入排序C快速排序D归并排序

单选题每次把待排序的区间划分为左、右两个子区间,其中左区间中记录的关键字均小于等于基准记录的关键字,右区间中记录的关键字均大于等于基准记录的关键字,这种排序称为()。A堆排序B归并排序C插入排序D快速排序