设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:A. 对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B.存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量C.存在任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D.仅当k1=0和k2=0,k1ξ+k2η是A的特征向量
设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:
A. 对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量
B.存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量
C.存在任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量
D.仅当k1=0和k2=0,k1ξ+k2η是A的特征向量
B.存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量
C.存在任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量
D.仅当k1=0和k2=0,k1ξ+k2η是A的特征向量
参考解析
解析:提示 特征向量必须是非零向量,选项D错误。 由矩阵的特征值、特征向量关系可知:①当ξ、η是A对应特征值λ的特征向量,当k1≠0,k2≠0时,k1ξ+k2η仍是A对应λ的特征向量。
②如果ξ、η是A对应不同特征值的特征向量,则k1ξ+k2η不是A的特征向量。
所以选项A、B均不成立。
②如果ξ、η是A对应不同特征值的特征向量,则k1ξ+k2η不是A的特征向量。
所以选项A、B均不成立。
相关考题:
设λ1,λ2都是n阶矩阵A的特征值,λ1≠λ2,,且a1与a2分别是A的对应于λ1与λ2的特征向量,则(). A.c1=0且c2=0时,a=c1a1+c2a2必是A的特征向量B.c1≠0且c2≠0时,a=c1a1+c2a2必是A的特征向量C.c1,c2=0时,a1=c1a1+c2a2必是A的特征向量D.c1≠0而c2=0时,a=c1a1+c2a2必是A的特征向量
n*n矩阵可看作是n维空间中的线性变换,矩阵的特征向量经过线性变换后,只是乘以某个常数(特征值),因此,特征向量和特征值在应用中具有重要的作用。下面的矩阵(其中w1、w2、w3均为正整数)有特征向量(w1,w2,w3),其对应的特征值为( )。A.1/3B.1C.3D.9
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta
设λ1,λ2是矩阵A 的2 个不同的特征值,ξ,η 是A 的分别属于λ1,λ2的特征向量,则以下选项中正确的是:(A)对任意的k1≠ 0和k2 ≠0,k1 ξ+k2η 都是A 的特征向量(B)存在常数k1≠ 0和k2≠0,使得k1ξ+k2η 是A 的特征向量(C)存在任意的k1≠ 0和k2≠ 0, k1ξ+ k2η 都不是A 的特征向量(D)仅当k1=k2=时, k1ξ+k2 η 是A 的特征向量
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。A、(2,2,1)TB、(-1,2,_2)TC、(-2,4,-4)TD、(-2,-4,4)
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量
设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。A、对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B、存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量C、对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D、仅当k1=k2=0时,k1ξ+k2η是A的特征向量
单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()Aα1-α2是A的属于特征值1的特征向量Bα1-α3是A的属于特征值1的特征向量Cα1-α3是A的属于特征值2的特征向量Dα1+α2+α3是A的属于特征值1的特征向量
单选题设λ1,λ2是矩阵A的两个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是( )。A对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B存在常数k1≠0和 k2≠0,使得k1ξ+k2η是A的特征向量C对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D仅当k1=k2=0时,k1ξ+k2η是A的特征向量
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。Aα是矩阵-2A的属于特征值-2λ的特征向量Bα是矩阵的属于特征值的特征向量Cα是矩阵A*的属于特征值的特征向量Dα是矩阵AT的属于特征值λ的特征向量
问答题证明: (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。 (2)矩阵可逆的充分必要条件是它的特征值都不为0。
单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。Aβ是A的属于特征值0的特征向量Bα是A的属于特征值0的特征向量Cβ是A的属于特征值3的特征向量Dα是A的属于特征值3的特征向量
单选题设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:()A对任意的k1≠0和k2≠0,k1ξ+k2η,都是A的特征向量B存在常数k1≠0和k2≠0,使得k1ξ+k2η,是A的特征向量C存在任意的k1≠0和k2≠0,k1ξ+k2η,都不是A的特征向量D仅当k1=k2=0时,k1ξ+k2η,是A的特征向量
单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()APαBP-1αCPTαD(P-1)Tα