给出数学文化的内容,请举出数学课堂中两个能够应用数学文化的例子.?
给出数学文化的内容,请举出数学课堂中两个能够应用数学文化的例子.?
参考解析
解析:数学是一门与概念、定理、公式相关的学科,教师在数学教学中渗透数学文化、设置与教学内容相关的且蕴含在现实生活中的数学文化、引导学生思考其中所隐含的数学知识和规律,对学生的数学学习具有巨大的帮助。例如: (1)在学习《整数和负数》时,“负数” 概念对学生来说相对抽象。教师可以在教学中渗透数学文化史:中国是最早提出负数的国家,《九章算术》 是最早、最完整介绍负数的古书,人们在求解方程时经常会遇到小数减大数的情形,为便于求解,便创造了负数;在古代为区分正负数,数学家创造了一种方法:用不同颜色的算筹来表示正、负数;中国古代不仅提出了负数的概念,还提出了整套的正、负数的运算法则,这些法则沿用至今。教师在教学中融入数学文化,让学生了解概念产生的背景和意义,利用概念与生活的相通性可以帮助学生更直观地理解概念。
(2)在教学《勾股定理》时,可以从毕达哥拉斯到朋友家做客的故事入手:毕达哥拉斯是古希腊最为著名的数学家之-,相传2500年前,他到朋友家做客,发现朋友家用地板砖铺成的地面反映出了直角三角形的三边关系。毕达哥拉斯发现直角三角形的三边关系的故事为《勾股定理》的教学提供了问题引入,学生通过思考故事中隐含的规律,从而进行猜想假设,再加上教师的演示将定理变得具体形象,学生能够更容易地总结出直角三角形的三边关系,即勾股定理。探究勾股定理相关的数学文化史的过程蕴含了丰富的数学思想方法,这对学生理解定理极为有利。
将数学文化渗透到数学教学中,将教材内容与数学文化巧妙结合起来,从数学文化中延伸出数学概念和规律,可以帮助学生理解相关内容。数学文化中蕴含的故事具有较强的趣味性,还可以激发学生的学习兴趣。
(2)在教学《勾股定理》时,可以从毕达哥拉斯到朋友家做客的故事入手:毕达哥拉斯是古希腊最为著名的数学家之-,相传2500年前,他到朋友家做客,发现朋友家用地板砖铺成的地面反映出了直角三角形的三边关系。毕达哥拉斯发现直角三角形的三边关系的故事为《勾股定理》的教学提供了问题引入,学生通过思考故事中隐含的规律,从而进行猜想假设,再加上教师的演示将定理变得具体形象,学生能够更容易地总结出直角三角形的三边关系,即勾股定理。探究勾股定理相关的数学文化史的过程蕴含了丰富的数学思想方法,这对学生理解定理极为有利。
将数学文化渗透到数学教学中,将教材内容与数学文化巧妙结合起来,从数学文化中延伸出数学概念和规律,可以帮助学生理解相关内容。数学文化中蕴含的故事具有较强的趣味性,还可以激发学生的学习兴趣。
相关考题:
《普通高中数学课程标准(实验)》将“( )、数学建模、数学文化”作为贯穿整个高中数学课程的重要学习活动,渗透或安排在每个模块或专题中,正是与创新能力培养的一个呼应,强调如何引导学生去发现问题、提出问题。A.数学探究B.数学应用C.数学思想D.数学概念
数学应用是贯穿高中数学课程的一条主线,其应用主线结构图如下图所示: 20世纪中叶以来,由于计算机和现代信息技术的飞速发展,使应用数学和数学应用得到了前所未有的发展,数学渗透到几乎每一个学科领域和人们日常生活的每一个角落。数学应用的巨大发展成为数学发展的显著特征之一。 (1)请举例说明高中数学内容在现实生活中的原型。 (2)分析高中数学教学中存在的问题。
《普通高中数学课程标准(实验)》将“( )、数学建模、数学文化”作为贯穿整个高中数学课程的重要学习活动,渗透或安排在每个模块或专题中,正是与创新能力培养的一个呼应,强调如何引导学生去发现问题、提出问题。A、数学探究B、数学应用C、数学思想D、数学概念
20世纪中叶以来,由于计算机和现代信息技术的飞速发展,使应用数学和数学应用得到了前所未有的发展,数学渗透到几乎每一个学科领域和人们日常生活的每一个角落。数学应用的巨大发展成为数学发展的显著特征之一。(1)请举例说明高中数学内容在现实生活中的原型。(2)分析高中数学教学中存在的问题。
函数知识一直是中学代数内容的主线。是研究代数、三角函数、数列、方程和不等式等初等数学内容的基础,函数思想又是数学解题中的重要思想,这就决定了函数在中学数学中的重要地位。 请说明初中函数内容教学的要求,并结合自己的教学,谈谈利用函数思想解决问题时,重点要注意的问题是什么 并举出两个你印象最为深刻的利用函数思想解题的例子。
单选题以下不属于数学文化的侠义意思的是()A数学思想B数学精神C数学方法D数学教育