在区间[0,1]中随机抽取两个数(χ,y),即(χ,y)服从[0,1]上的均匀分布。求这两个数之差的绝对值小于1/2的概率。

在区间[0,1]中随机抽取两个数(χ,y),即(χ,y)服从[0,1]上的均匀分布。求这两个数之差的绝对值小于1/2的概率。


参考解析

解析:

相关考题:

设X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y服从的分布为() A、X+Y服从N(0,1)B、X+Y不服从正态分布C、X+Y~X2(2)D、X+Y也服从正态分布

若函数y=f(x)是一随机变量的概率密度,则()一定成立。 A、y=f(x)的定义域为[0,1]B、y=f(x)非负C、y=f(x)的值域为[0,1]D、y=f(x)在(-∞,+∞)内连续

在区间(0, 1)中随机地取两个数, 则两数之差的绝对值小于 的概率为____________.

现实世界中随机性多于确定性。在计算机上模拟随机的实际问题,并进行统计计算,这是非常有用的方法。为此,各种程序设计语言都有产生(伪)随机数的函数。这种函数,每调用一次,就可以获得一个位于区间(0,1)内的数。在程序运行时,多次产生的这些数会均匀地分布在0,1之间。在区间(0,1)内均匀分布的含义是指:任取N个随机数,当N足够大时,(56)。应用人员可以利用这种随机数来生成满足指定概率分布的数据,并利用这些数据来模拟实际问题。某程序每获得一对随机数(x,y),都判断x2+y2≤1是否成立。如果N对随机数中,有m对满足这个不等式,则当N足够大时,数值m/N将会比较接近(57)。A.必然有一半数小于1/2,有一半数大于1/2B.大致顺序、等间隔地排列于(0,1)之间C.其中落在任意子区间(a,b)中的数的比率大致接近于b-aD.从小到大排序后,各个数都分别位于(0,1)的Ⅳ等分子区间内

设X在区间[-2,2]上服从均匀分布,令Y=求:  (1)Y,Z的联合分布律;(2)D(Y+Z).

设X~N(0,1),y=X^2,求y的概率密度函数.

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.

设随机变量X~U(0,1),在X=x(0  (1)求X,y的联合密度函数;  (2)求y的边缘密度函数.

设随机变量X服从参数为2的指数分布,证明:Y=1-在区间(0,1)上服从均匀分布.

设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令  U=,V=.  (1)求(U,V)的联合分布;(2)求.

设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;  (Ⅱ)Y的概率密度;  (Ⅲ)概率P{X+Y>1}.

设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).  (Ⅰ)求Y的分布函数FY(y);  (Ⅱ)求EY.

设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为 A.A0B.1C.2D.3

已知二维随机变量(X,Y)服从区域[0,1]×[0,1]上的均匀分布,则( )。A.P{X>0.5}=0.25B.P{Y>0.5}=0.25C.P{max(X,Y)>0.5}=0.25D.P{min(X,Y)>0.5}=0.25

射手向区间[0,1]射击一次,落点服从均匀分布,若射中[0,1/2]区间,则观众甲中奖;若射中区间,则观众乙中奖。若甲中奖和乙中奖这两个事件是独立的,求x的值。

在区间[0,1]内随机取出两个数,则这两个数的平方和也在区间[0,1]内的概率是()。A. 1/2 B.3/4C.π/4 D.1/4

设随机变量X与Y相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有()。A、X2B、X+YC、(X,Y)D、X-Y

X,Y相互独立,且都服[0,1]上的均匀分布,则服从均匀分布的是().A、(X,Y)B、XYC、X+YD、X-Y

设随机变量X~N(0,1),Y=aX+b(a>0),则()A、Y~N(0,1)B、Y~N(b,a)C、Y~N(b,a2)D、Y~N(a+b,a2)

在区间(0,1)内随机地取两个数,则所取两数之和不超过5.0概率为()。

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=()A、1/6B、1/2C、1D、2

设随机变量X,Y相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是()。A、XYB、(X,Y)C、X—YD、X+Y

设X在[0,1]上服从均匀分布,Y=2X+1,则下列结论正确的是()A、Y在[0,1]上服从均匀分布B、Y在[1,3]上服从均匀分布C、Y在[0,3]上服从均匀分布D、P{0≤Y≤1}=1

设X,Y相互独立,且都服从标准正态分布N(0,1),令Z=X2+Y2则Z服从的分布是().A、N(0,2)分布B、单位圆上的均匀分布C、参数为1的瑞利分布D、N(0,1)分布

问答题23.X~N(0,1),求以下Y的概率密度:Y=|X|.

问答题设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.