单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。A曲线是向上凹的B曲线是向上凸的C单调减少D单调增加
单选题
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。
A
曲线是向上凹的
B
曲线是向上凸的
C
单调减少
D
单调增加
参考解析
解析:
判断函数的单调性及凹凸性,需求出其导函数和二阶导数,并判断其正负号。g′(x)=[xf′(x)-f(x)]/x2,构造函数F(x)=xf′(x)-f(x),F′(x)=xf″(x)<0(题中已给出f″(x)<0),故F(x)单调减少。则F(x)<F(1)=0,故g′(x)<0,即g(x)在(1,+∞)内单调减少。
判断函数的单调性及凹凸性,需求出其导函数和二阶导数,并判断其正负号。g′(x)=[xf′(x)-f(x)]/x2,构造函数F(x)=xf′(x)-f(x),F′(x)=xf″(x)<0(题中已给出f″(x)<0),故F(x)单调减少。则F(x)<F(1)=0,故g′(x)<0,即g(x)在(1,+∞)内单调减少。
相关考题:
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<
根据f(x)的导函数f'(x)的图像,判定下列结论正确的是()A.在(-∞,-1)内,f(x)是单调增加的B.在(-∞,0)内,f(x)是单调增加的C.f(-1)为极大值D.f(-1)为极小值
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f"(x)≥0时,f(x)≥g(x)D.当f"(x)≥0时,f(x)≤g(x)
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数B.设f(x)为单调函数,则f(x)也为单调函数C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
函数y=f(x)在(a,6)内二阶可导,且f′(x)>0,f″(x)<0,则曲线y=f(x)在(a,6)内( ).《》( )A.单调增加且为凹B.单调增加且为凸C.单调减少且为凹D.单调减少且为凸
已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。
单选题当a<x<b时,有f′(x)>0,f″(x)<0,则在区间(a,b)内,函数y=f(x)的图形沿x轴正向是( )。[2012年真题]A单调减且凸的B单调减且凹的C单调增且凸的D单调增且凹的
单选题若f(-x)=f(x)(-∞<x<+∞),在(-∞,0)内,f′(x)>0,f″(x)<0,则在(0,+∞)内( )。Af(x)单调增加且其图像是向上凸的Bf(x)单调增加且其图像是向上凹的Cf(x)单调减少且其图像是向上凸的Df(x)单调减少且其图像是向上凹的
单选题设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处( )。A取得极大值B取得极小值C在x0点某邻域内单调增加D在x0点某邻域内单调减少
单选题设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则( )。Af(0)=1为f(x)的极小值Bf(0)=1为f(x)的极大值C(0,f(0))为曲线y=f(x)的拐点D由g(x)才能确定f(x)的极值或拐点
单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
单选题设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是( )。A奇函数B偶函数C周期函数D单调函数