单选题若目标函数为求max,一个基可行解比另一个基可行解更好的标志是()AA使Z更大B使Z更小C绝对值更大DZ绝对值更小

单选题
若目标函数为求max,一个基可行解比另一个基可行解更好的标志是()
A

A使Z更大

B

使Z更小

C

绝对值更大

D

Z绝对值更小


参考解析

解析: 暂无解析

相关考题:

若原问题有可行解,但目标函数在可行域上无界,则对偶问题无可行解。()

以下不属于图解法步骤的是()。 A、建立目标函数B、求可行解集合C、绘制目标函数图形D、移动目标函数求最优解

基本解对应的基是可行基当非负时为基本可行解,对应的基叫可行基( )

线性规划中,()不正确。A、有可行解必有可行基解B、有可行解必有最优解C、若存在最优解,则最优基解的个数不超过2D、可行域无界时也可能得到最优解

关于线性规划模型的可行解和基解,叙述正确的是()A、可行解必是基解B、基解必是可行解C、可行解必然是非基变量均为0,基变量均非负D、非基变量均为0,得到的解都是基解

求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有()A、无界解B、无可行解C、唯一最优解D、无穷多最优解

单纯形法求解时,若求得的基础解满足非负要求,则该基础解为()。A、可行解B、最优解C、特解D、可行基解

线性规划问题中,下面的叙述不正确的有()。A、可行解一定存在B、可行基解必是最优解C、最优解一定存在D、最优解若存在,在可行基解中必有最优解

下列关于可行解,基本解,基可行解的说法错误的是()A、可行解中包含基可行解B、可行解与基本解之间无交集C、线性规划问题有可行解必有基可行解D、满足非负约束条件的基本解为基可行解

基本解对应的基X,当非负时为基本可行解,对应的基叫可行基。

如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A、基B、基本解C、基可行解D、可行域

线性规划问题中基可行解与基解的区别在于()A、基解都不是可行解B、基可行解变量Xj≥0C、基解是凸集的边界D、基解变量Xj≤0

在求minS的线性规划问题中,则()不正确。A、最优解只能在可行基解中才有B、最优解只能在基解中才有C、基变量的检验数只能为零D、有可行解必有最优解

从一个基可行解到另一个基可行解的变换,就是进行一次()。

若目标函数为求max,一个基可行解比另一个基可行解更好的标志是()A、A使Z更大B、使Z更小C、绝对值更大D、Z绝对值更小

线性规划的退化基可行解是指()A、基可行解中存在为零的非基变量B、基可行解中存在为零的基变量C、非基变量的检验数为零D、所有基变量不等于零

关于线性规划和其对偶规划的叙述中,正确的是()A、极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B、极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C、若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D、若对偶问题可行,则其目标函数无界的充要条件是原始问题可行

单选题求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有()A无界解B无可行解C唯一最优解D无穷多最优解

单选题线性规划问题中基可行解与基解的区别在于()A基解都不是可行解B基可行解变量Xj≥0C基解是凸集的边界D基解变量Xj≤0

单选题关于求最小化值的单纯形算法,下列说法不正确的是()。A通常选取最大正检验数对应的变量作为换入变量。B通常按最小比值原则确定离基变量。C若线性规划问题的可行域有界,则该问题最多有有限个数的最优解。D单纯形法的迭代计算过程是从一基个可行解转换到目标函数更小的另一个基可行解。

单选题线性规划中,()不正确。A有可行解必有可行基解B有可行解必有最优解C若存在最优解,则最优基解的个数不超过2D可行域无界时也可能得到最优解

多选题线性规划问题中,下面的叙述不正确的有()。A可行解一定存在B可行基解必是最优解C最优解一定存在D最优解若存在,在可行基解中必有最优解

填空题从一个基可行解到另一个基可行解的变换,就是进行一次()。

单选题在求minS的线性规划问题中,则()不正确。A最优解只能在可行基解中才有B最优解只能在基解中才有C基变量的检验数只能为零D有可行解必有最优解

单选题如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A基B基本解C基可行解D可行域

单选题关于线性规划模型的可行解和基解,叙述正确的是()A可行解必是基解B基解必是可行解C可行解必然是非基变量均为0,基变量均非负D非基变量均为0,得到的解都是基解

单选题下列关于可行解,基本解,基可行解的说法错误的是()A可行解中包含基可行解B可行解与基本解之间无交集C线性规划问题有可行解必有基可行解D满足非负约束条件的基本解为基可行解