设 (x)在[a,b]上连续,在(a,b)内可导,且 (a)= (b),则(  )。

设 (x)在[a,b]上连续,在(a,b)内可导,且 (a)= (b),则(  )。




参考解析

解析:闭区间上连续函数必有最大值与最小值,而不是开区间,故排除A、B、C项;由罗尔中值定理可知D项正确。

相关考题:

若f(x)在处可导,则∣f(x)∣在x=x0处() A、可导B、不可导C、连续但未必可导D、不连续

设函数y=f(x)在(0,+∞)内有界且可导,则( )。A.B.C.D.

设f(x)在(-∞,+∞)内可导,则下列命题正确的是( )

A.F(x)在x=0点不连续B.F(x)在(-∞,+∞)内连续,在x=0点不可导C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

设f(x)在[a,b]上连续,在(a,b)内可导

设f(x)在[a,b]上可导,且f(a)f(b)小于0,

设,则f(x)在点x=1处:A.不连续B.连续但左、右导数不存在C.连续但不可导D.可导

设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值B.f(x)在[a,b]上一致连续C.f(x)在[a,b]上可积D.f(x)在[a,b]上可导

设其中g(x)是有界函数,则f(x)在x=0点( )。A、极限不存在B、极限存在但不连续C、连续、但不可导D、可导

设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值B.f(x)在(a,b)上必一致连续C.f(x)在(a,b)上必有D.f(x)在(a,b)上必连续

设?(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )A.(x)在(a,b)上必有最大值B.(x)在(a,b)上必一致连续C.(x)在(a,b)上必有界D.(x)在(a,b)上必连续

设函数 (x)在[a,b]上连续且 (x)>0,则( )

设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有( )《》( )

设函数f(x)=丨x丨,则函数在点x=0处()A、连续且可导B、连续且可微C、连续不可导D、不可连续不可微

填空题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

问答题设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。

问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

单选题设函数f(x)=丨x丨,则函数在点x=0处()A连续且可导B连续且可微C连续不可导D不可连续不可微

问答题设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。

问答题设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。

问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

问答题设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。

问答题设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且对于(a,b)内一切x有f′(x)g(x)-f(x)g′(x)≠0。证明:如果f(x)在(a,b)内有两个零点,则介于两个零点之间,g(x)至少有一个零点。