10、已知含有截距项的三元线性回归模型估计的残差平方和为800,估计用样本容量为24,则随机误差项方差的估计为()A.33.33B.40C.38.09D.36.36

10、已知含有截距项的三元线性回归模型估计的残差平方和为800,估计用样本容量为24,则随机误差项方差的估计为()

A.33.33

B.40

C.38.09

D.36.36


参考答案和解析
B

相关考题:

设为回归模型中的解释变量的数目(不包括截距项),则要使含有截距项的模型能够得出参数估计量,所要求的最小样本容量为()A.nk+1B.nk+1C.n30D.n3(k+1)

已知含有截距项的三元线性回归模型估计的残差平方和为 已知含有截距项的三元线性回归模型估计的残差平方和为,估计用样本容量为24,则随机误差项的方差估计量为()。

设K为回归模型中的参数个数(包括截距项),n为样本容量,ESS为残差平方和,RSS为回归平方和。则对总体回归模型进行显著性检验时构造的F统计量为()。A.AB.BC.CD.D

若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A.普通最小二乘法B.加权最小二乘法C.广义差分法D.工具变量法

随机误差项方差的估计量公式( )。

若回归模型随机误差项的方差为常数的假定不成立,则称模型存在为异方差现象。( )

如果回归模型中随机误差项之间存在序列相关,则普通最小二乘估计量不是无偏估计量,也不再具有最小方差的性质。

如果回归模型中的随机误差项存在异方差,则模型参数的普通最小二乘估计量是( )。A.线性性B.无偏性C.有效性D.一致性E.渐进有效性

对于一元线性回归模型,在经典线性回归的假定下,参数的最小二乘估计量是最小方差无偏估计。( )

回归模型在近似共线性下参数估计量的方差会增大,方差膨胀因子为1/1-r。( )

设k为回归模型中的参数个数(包括截距项),则总体线性回归模型进行显著性检验时所用的F统计量可表示为( )。

设为回归模型中的解释变量的数目(不包括截距项),则要使含有截距项的模型能够得出参数估计量,所要求的最小样本容量为()A、n≥k+1B、n≤k+1C、n≥30D、n≥3(k+1)

已知二元线性回归模型估计的残差平方和为Σe2i=800,估计用样本容量为n=23,则随机误差项μt的方差的OLS估计值为()。A、33.33B、40C、38.09D、36.36

如果回归模型中的随机误差项存在异方差,则模型参数的普通最小二乘估计量()。A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效

使用普通最小二乘法在对自回归模型进行估计时,若随机误差项满足经典线性回归模型的所有假定,则估计量是一致估计量的模型是()A、Koyck变换模型B、部分调整模型C、自适应预期模型D、自适应预期和部分调整混合模型

当一个线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为()A、有偏估计量B、有效估计量C、无效估计量D、渐近有效估计量

线性回归模型中误差项的含义是()A、回归直线的截距B、回归直线的斜率C、观测值和估计值之间的残值D、除X和Y线性关系之外的随机因素对Y的影响

对于变截距面板数据模型,截面上存在个体影响可以用常数项的差别来说明模型,以下阐述不正确的有()。A、可以建立固定影响变截距模型进行分析B、可以建立随机影响变截距模型进行分析C、如果随机误差项不满足同方差性或相互独立的假设,则需要采用广义最小二乘法(GLS)对模型进行估计D、如果随机误差项与解释变量相关,则需要采用二阶段最小二乘方法对模型进行估计

若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A、普通最小二乘法B、加权最小二乘法C、广义差分法D、工具变量法

如果线性回归模型中随机误差项的方差不是(),则称随机误差项具有异方差性。

用样本容量为n的数据,对含有k个实解释变量的多元线性回归模型进行参数估计,得到的残差平方和的自由度是()。A、kB、n-k-1C、n-1

如果模型包含随机解释变量,且与随机误差项在大样本下渐近无关,则普通最小二乘估计量是()。A、无偏估计量B、有效估计量C、一致估计量D、最佳线性无偏估计量

关于自回归模型,下列表述正确的有()。A、估计自回归模型时的主要问题在于,滞后被解释变量的存在可能导致它与随机误差项相关,以及随机误差项出现自相关性B、Koyck模型和自适应预期模型都存在解释变量与随机误差项同期相关问题C、局部调整模型中解释变量与随机误差项没有同期相关,因此可以应用OLS估计D、Koyck模型与自适应预期模型不满足古典假定,如果用OLS直接进行估计,则估计量是有偏的、非一致估计E、无限期分布滞后模型可以通过一定的方法可以转换为一阶自回归模型

已知三元线性回归模型估计的残差平方和为Σe2i=800,估计用样本容量为n=24,则随机误差项μt的方差的OLS估计为()。A、33.33B、40C、38.09D、36.36

判断题如果回归模型中随机误差项之间存在序列相关,则普通最小二乘估计量不是无偏估计量,也不再具有最小方差的性质。A对B错

单选题若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A普通最小二乘法B加权最小二乘法C广义差分法D工具变量法

单选题当一个线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为()A有偏估计量B有效估计量C无效估计量D渐近有效估计量

单选题使用普通最小二乘法在对自回归模型进行估计时,若随机误差项满足经典线性回归模型的所有假定,则估计量是一致估计量的模型是()AKoyck变换模型B部分调整模型C自适应预期模型D自适应预期和部分调整混合模型