若回归模型中的随机误差项存在一阶自回归形式的序列相关,则估计模型参数应采用()。A.普通最小二乘法B.加权最小二乘法C.广义差分法D.工具变量法
如果回归模型违背了同方差假定,最小二乘估计量是有偏无效的。
如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量( )。A.不确定,方差无限大B.确定,方差无限大C.不确定,方差最小D.确定,方差最小
如果模型包含的随机解释变量与随机项不独立但也不线性相关,则普通最小二乘估计量和工具变量估计都是:()。 A、无偏估计量B、有效估计量C、一致估计量D、最佳线性无编估计量
在如下耐用品存量调整模型中耐用品的存量yt由前一个时期的存量yt-1和当期收入xt共同决定。假定模型的随机误差项不存在序列相关性,是独立同分布的高斯白噪声过程。下列说法正确的是()。 A、普通最小二乘估计量是无偏的B、普通最小二乘估计量是一致的C、普通最小二乘估计量是有偏的
在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。( )
如果回归模型中随机误差项之间存在序列相关,则普通最小二乘估计量不是无偏估计量,也不再具有最小方差的性质。
在只知道随机干扰项的方差一协方差矩阵的情形下,可以对存在序列相关的模型采用( )估计得到参数的最佳线性无偏估计量。A.普通最小二乘法B.加权最小二乘法C.广义最小二乘法D.工具变量法
如果回归模型中的随机误差项存在异方差,则模型参数的普通最小二乘估计量是( )。A.线性性B.无偏性C.有效性D.一致性E.渐进有效性
若回归模型中的随机误差项存在一阶自回归形式的序列相关,则估计模型参数应采用()。A、普通最小二乘法B、加权最小二乘法C、广义差分法D、工具变量法
模型结构参数的普通最小二乘估计量具有线性性、无偏性、有效性,随机干扰项方差的普通最小二乘估计量也是无偏的。
若回归模型的随机误差项存在一阶自回归形式的序列相关,则估计参数应采用()。A、普通最小二乘法B、加权最小二乘法C、广义差分法D、工具变量法
异方差性的影响主要有()。A、普通最小二乘估计量是有偏的B、普通最小二乘估计量是无偏的C、普通最小二乘估计量不再具有最小方差性D、建立在普通最小二乘估计基础上的假设检验失效E、建立在普通最小二乘估计基础上的预测区间变宽
如果回归模型中的随机误差项存在异方差,则模型参数的普通最小二乘估计量()。A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效
当模型存在异方差时,加权最小二乘估计量具有()A、线性性B、无偏性C、有效性D、一致性E、不是最小方差无偏估计量
当一个线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为()A、有偏估计量B、有效估计量C、无效估计量D、渐近有效估计量
如果股指期货回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量()A、不确定,方差无限大B、确定,方差无限大C、不确定,方差最小D、确定,方差最小
若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A、普通最小二乘法B、加权最小二乘法C、广义差分法D、工具变量法
如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量()A、不确定,方差无限大B、确定,方差无限大C、不确定,方差最小D、确定,方差最小
如果模型包含随机解释变量,且与随机干扰项异期相关,则普通最小二乘估计量是()。A、无偏估计量B、有效估计量C、一致估计量D、最佳线性无偏估计量
如果模型包含随机解释变量,且与随机误差项在大样本下渐近无关,则普通最小二乘估计量是()。A、无偏估计量B、有效估计量C、一致估计量D、最佳线性无偏估计量
多选题当模型存在异方差时,加权最小二乘估计量具有()A线性性B无偏性C有效性D一致性E不是最小方差无偏估计量
判断题在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。( )A对B错
单选题如果回归模型中的随机误差项存在异方差,则模型参数的普通最小二乘估计量()。A无偏且有效B无偏但非有效C有偏但有效D有偏且非有效
单选题若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A普通最小二乘法B加权最小二乘法C广义差分法D工具变量法
单选题当一个线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为()A有偏估计量B有效估计量C无效估计量D渐近有效估计量
单选题若回归模型中的随机误差项存在一阶自回归形式的序列相关,则估计模型参数应采用()。A普通最小二乘法B加权最小二乘法C广义差分法D工具变量法