判断:如果一个向量组线性无关,那么它的任何一个非空的部分组可能线性相关.
判断:如果一个向量组线性无关,那么它的任何一个非空的部分组可能线性相关.
参考答案和解析
错
相关考题:
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s
单选题向量组α(→)1,α(→)2,…,α(→)s线性相关的充要条件是( )。Aα(→)1,α(→)2,…,α(→)s均为零向量B其中有一个部分组线性相关Cα(→)1,α(→)2,…,α(→)s中任意一个向量都能由其余向量线性表示D其中至少有一个向量可以表为其余向量的线性组合
单选题设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则( )。A必定r<sB向量组中任意个数小于r的部分组线性无关C向量组中任意r个向量线性无关D若s>r,则向量组中任意r+l个向量必线性相关
单选题设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).Ar<s时,向量组(Ⅱ)必线性相关Br>s时,向量组(Ⅱ)必线性相关Cr<s时,向量组(Ⅰ)必线性相关Dr>s时,向量组(Ⅰ)必线性相关
单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则( )。A向量组(Ⅰ)与(Ⅱ)都线性相关B向量组(Ⅰ)线性相关C向量组(Ⅱ)线性相关D向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关
单选题下列说法不正确的是( )。As个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关Bs个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关Cs个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关Ds个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关
单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t( )。A一定线性相关B一定线性无关C可能线性相关,也可能线性无关D既不线性相关,也不线性无关
单选题设向量组的秩为r,则:()A该向量组所含向量的个数必大于rB该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C该向量组中有r个向量线性无关,有r+1个向量线性相关D该向量组中有r个向量线性无关,任何r+1个向量必线性相关
单选题设A,B为满足AB=0(→)的任意两个非零矩阵,则必有( )。AA的列向量组线性相关,B的行向量组线性相关BA的列向量组线性相关,B的列向量组线性相关CA的行向量组线性相关,B的行向量组线性相关DA的行向量组线性相关,B的列向量组线性相关