在估计函数f(x)= g(x) + h(x)中,其中g(x)表示从当前节点到目标节点代价的估计
在估计函数f(x)= g(x) + h(x)中,其中g(x)表示从当前节点到目标节点代价的估计
参考答案和解析
C
相关考题:
设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。 A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)
插值的基本思想是在插值点附近选取几个合适的节点,过这些选取的点构造出一个简单的函数 g(x),在此小段上用 g(x)代替原函数 f(x),插值点的函数值( )用( )的值代替。 A. g(x),f(x)B. f(x),g(x)C. g(x),原函数D. 理论值,近似值
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)
已知函数f(x)=(1/2)e2x-ax,g(x)=6xlnx,,h(x)=2e2x-4/x,a>o,b≠0。 (1)求函数f(x)的最小值;(3分) (2)求函数g(x)的单调区间;(3分) (3)证明:函数h(x)在[1/2,1]上有且仅有l个零点。(4分)
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x)B.f(x)g(a)>f(a)g(x)C.f(x)g(x)>f(b)g(b)D.f(x)g(x)>f(a)g(a)
在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵x+c代替,可以得到什么?()A、f(xc)+g(xc)=h(x+c)B、f(x+c)g(x+c)=ch(x)C、[f(x)+g(x)]c=h(x+c)D、f(x+c)+g(x+c)=ch(x)
设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。A、F(x)+C也是f(x)的原函数,C为任意常数B、F(x)=G(x)+C,C为任意常数C、F(x)=G(x)+C,C为某个常数D、F’(x)=G’(x)
在F[x]中,若g(x)|fi(x),其中i=1,2…s,则对于任意u1(x)…us(x)∈F(x),u1(x)f1(x)+…us(x)fs(x)可以被谁整除?()A、g(ux)B、g(u(x))C、u(g(x))D、g(x)
单选题在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵x+c代替,可以得到什么?()Af(xc)+g(xc)=h(x+c)Bf(x+c)g(x+c)=ch(x)C[f(x)+g(x)]c=h(x+c)Df(x+c)+g(x+c)=ch(x)
单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。[2018年真题]Af(x)/g(x)>f(a)/g(b)Bf(x)/g(x)>f(b)/g(b)Cf(x)g(x)>f(a)g(a)Df(x)g(x)>f(b)g(b)
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
单选题设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是( )。[2018年真题]Af[g(x)]Bf[f(x)]Cg[f(x)]Dg[g(x)]