22、若一函数在某一点处的偏导数存在,该函数在该点处连续。
22、若一函数在某一点处的偏导数存在,该函数在该点处连续。
参考答案和解析
错误
相关考题:
以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在
下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A②⇒③⇒①B③⇒②⇒①C③⇒④⇒①D③⇒①⇒④
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
单选题函数 在点 处的一阶偏导数存在是该函数在此点可微分的()。A必要条件B充分条件C充分必要条件D既非充分条件也非必要条件