单选题f(X1,X2)在点X*处存在极小值的充分条件是:要求函数在X*处的Hessian矩阵H(X*)为()。A负定B正定C各阶方子式小于零D各阶方子式等于零

单选题
f(X1,X2)在点X*处存在极小值的充分条件是:要求函数在X*处的Hessian矩阵H(X*)为()。
A

负定

B

正定

C

各阶方子式小于零

D

各阶方子式等于零


参考解析

解析: 暂无解析

相关考题:

以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<

函数f(x)在点x=x0处连续是f(x)在点x=x0处可微的(  )。A.充分条件B.充要条件C.必要条件D.无关条件

函数y=f(x)在点x=x0处取得极小值,则必有:A.f′(x0)=0B.f′′(x0)>0C. f′(x0)=0 且 f(xo)>0D.f′(x0)=0 或导数不存在

函数y=f(x) 在点x=x0处取得极小值,则必有:A. f'(x0)=0B.f''(x0)>0C. f'(x0)=0且f''(x0)>0D.f'(x0)=0或导数不存在

函数y = f (x)在点x = x0,处取得极小值,则必有:

函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的()A.必要条件B.充分条件C.既非必要又非充分条件D.充要条件

函数y=(x)在点x=0处的二阶导数存在,且'(0)=0,"(0)>0,则下列结论正确的是().A.x=0不是函数(x)的驻点B.x=0不是函数(x)的极值点C.x=0是函数(x)的极小值点D.x=0是函数(x)的极大值点

下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在

函数f(x)在点x0处有定义,是f(x)在点x0处连续的()A.必要条件,但非充分条件B.充分条件,但非必要条件C.充分必要条件D.非充分条件,亦非必要条件

设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0B.f(0)>1,f"(0)C.f(0)0D.f(0)

求函数.f(x)=x2?2x在x=0处的n阶导数,f(n)(O)。

设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么( )。A.x=x1及x=x2都必不是f(x)的极值点B.只有x=x1是f(x)的极值点C.x=x1及x=x2都有可能是f(x)的极值点D.只有x=x2是f(x)的极值点

函数f(x)在点x=x0处连续是f(x)在x0处可导的(  )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分条件也非必要条件

f(X1,X2)在点X*处存在极小值的充分条件是:要求函数在X*处的Hessian矩阵H(X*)为()。A、负定B、正定C、各阶方子式小于零D、各阶方子式等于零

多元函数F(X)在X*处存在极大值的充分必要条件是:在X*处的Hessian矩阵()。A、等于零B、大于零C、负定D、正定

函数在X*处的海森矩阵H(X*)为()时,f(x1,x2)在点X*处存在极大值。A、负定B、正定C、各阶方子式小于零D、各阶方子式等于零

设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。A、x=x1及x=x2都必不是f(x)的极值点B、只有x=x1是f(x)的极值点C、x=x1及x=x2都有可能是f(x)的极值点D、只有x=x2是f(x)的极值点

单选题设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。Ax=x1及x=x2都必不是f(x)的极值点B只有x=x1是f(x)的极值点Cx=x1及x=x2都有可能是f(x)的极值点D只有x=x2是f(x)的极值点

单选题若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )Af(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)Bf(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)Cf(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)Df(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)

单选题若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处(  )A必取得极小值B必取得极大值C不可能取得极值D可能取极大值,也可能去极小值

单选题多元函数F(X)在X*处存在极大值的充分必要条件是:在X*处的Hessian矩阵()。A等于零B大于零C负定D正定

单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加

单选题函数在X*处的海森矩阵H(X*)为()时,f(x1,x2)在点X*处存在极大值。A负定B正定C各阶方子式小于零D各阶方子式等于零

问答题设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

单选题函数f(x)在点x=x0处连续是f(x)在点x=x0处可微的(  )。[2019年真题]A充分条件B充要条件C必要条件D无关条件

单选题设函数f(x)={x2,x≤1;ax+b,x1},为使函数f(x)在x=1处连续且可导,则()。Aa=1,b=0Ba=0,b=1Ca=2,b=-1Da=-1,b=2