一质点在x轴上作简谐振动,其平衡位置取作坐标原点.经过平衡位置且沿X轴正方向运动时相位为:A.-π/2B.π/2C.0D.π
一质点在x轴上作简谐振动,其平衡位置取作坐标原点.经过平衡位置且沿X轴正方向运动时相位为:
A.-π/2
B.π/2
C.0
D.π
参考答案和解析
π/2
相关考题:
一平面简谐波在t=0时的波形曲线如图所示,设波沿x轴正向传播,波速υ=1.6×10-1m/s,则该波的角频率ω=______rad/s,坐标原点处的质元作简谐振动的表达式为y=_____(SI)。
一简谐波沿x轴正向传播,波的振幅为A,角频率为ω,波速为u。若以原点处的质元经平衡位置正方向运动时作为计时的起点,则该波的波动方程是( )。A.y=Acos[ω(t-x/u)+π/2]B.y=Acos[ω(t-x/u)-π/2]C.y=Acos[ω(t-x/u)+π]D.y=Acos[ω(t-x/u)-π/3]
一列简谐横波在t1=0.5 S时的波形图如图所示。已知平衡位置在x=0.5 m的A处的质点,在t2=1.5s时第一次回到A处,且其速度方向指向y轴负方向。这列波(??)A.沿x轴正向传播,波速为1 m/sB.沿x轴正向传播,波速为2 m/sC.沿x轴负向传播,波速为1 m/sD.沿x轴负向传播,波速为2 m/s
某质点作直线运动的运动学方程为x=3t-5t3%+6(SI),则该质点作( )。A.匀加速直线运动.加速度沿x轴正方向B.匀加速直线运动.加速度沿x轴负方向C.变加速直线运动.加速度沿x轴正方向D.变加速直线运动.加速度沿x轴负方向
一沿X轴作简谐振动的弹簧振子,振幅为A,周期为T,振动方程用余弦函数表示,如果该振子的初相为(4/3)π,则t=0时,质点的位置在()A、过x=(1/2)A处,向负方向运动;B、过x=(1/2)A处,向正方向运动;C、过x=-(1/2)A处,向负方向运动;D、过x=-(1/2)A处,向正方向运动。
一弹簧振子作简谐振动,振幅为A,周期为T,其运动方程用余弦函数表示,若t=0时: (1)振子在负的最大位移处,则初位相为(); (2)振子在平衡位置向正方向运动,则初位相为(); (3)振子在位移为A/2处,且向负方向运动,则初位相为()。
测量上使用的平面直角坐标系的坐标轴是()A、南北方向的坐标轴为y轴,向北为正;东西方向的为x轴,向东为正B、南北方向的坐标轴为y轴,向南为正;东西方向的为x轴,向西为正C、南北方向的坐标轴为x轴,向北为正;东西方向的为y轴,向东为正D、南北方向的坐标轴为x轴,向南为正;东西方向的为y轴,向西为正
对一个作简谐振动的物体,下面哪种说法是正确的?()A、物体在运动正方向的端点时,速度和加速度都达到最大值;B、物体位于平衡位置且向负方向运动时,速度和加速度都为零;C、物体位于平衡位置且向正方向运动时,速度最大,加速度为零;D、物体处负方向的端点时,速度最大,加速度为零。
某质点的运动方程为x=3t-5t3+6(SI),则该质点作()A、匀加速直线运动,加速度沿X轴正方向B、匀加速直线运动,加速度沿X轴负方向C、变加速直线运动,加速度沿X轴正方向D、变加速直线运动,加速度沿X轴负方向
一物体沿x轴做简谐振动,振幅A=0.12m,周期T=2s。当t=0时,物体的位移x=0.06m,且向x轴正向运动。求:(1)此简谐振动的表达式; (2)t=T/4时物体的位置、速度和加速度; (3)物体从x=-0.06m,向x轴负方向运动第一次回到平衡位置所需的时间。
某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则该质点作()A、匀加速直线运动,加速度沿x轴正方向B、匀加速直线运动,加速度沿x轴负方向C、变加速直线运动,加速度沿x轴正方向D、变加速直线运动,加速度沿x轴负方向
一质点沿x轴作简谐振动,振动方程为x=0.04cos[2πt+(1/3)π](SI),从t=0时刻起,到质点位置在x=-0.02m处,且向x轴正方向运动的最短时间间隔为()A、(1/8)sB、(1/6)sC、(1/4)sD、(1/2)s
物体沿x轴作简谐振动,其振幅为A=0.1m,周期为T=2.0s,t=0时物体的位移为X0=-0.05m,且向x轴负方向运动,物体第一次运动到x=0.05m处所用时间是()A、0.5sB、2.0sC、1.0sD、3.0s
单选题A 该波沿x轴负方向传播B 该波的传播速度是5m/sC 再经过0.3s,质点B通过的路程为6mD t=0.3s时,质点B处于平衡位置且向y轴负方向运动