40、下面哪种情况不会影响K-means聚类的效果?A.数据点密度分布不均B.数据点呈圆形状分布C.数据中有异常点存在D.数据点呈非凸形状分布
40、下面哪种情况不会影响K-means聚类的效果?
A.数据点密度分布不均
B.数据点呈圆形状分布
C.数据中有异常点存在
D.数据点呈非凸形状分布
参考答案和解析
1)非凸(non-convex)数据。可以用kernal k均值聚类解决。2)非数值型数据。Kmeans只能处理数值型数据。可以用k-modes。初始化k个聚类中心,计算样本之间相似性是根据两个样本之间所有属性,如属性不同则距离加1,相同则不加,所以距离越大,样本的不相关性越大。更新聚类中心,使用一个类中每个属性出现频率最大的那个属性值作为本类的聚类中心。3)噪声和离群值的数据。可以用kmedoids。4)不规则形状(有些部分密度很大,有些很小),可以用密度聚类DBSCAN解决。
相关考题:
关于聚类算法K-Means和DBSCAN的叙述中,不正确的是( )。A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.当簇的密度变化较大时,DBSCAN不能很好的处理,而K-Means则可以
K-means算法叙述正确的是()A、在K-means算法中K是事先给定的,这个K值的选定是非常难以估计的B、在K-means算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化C、对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目D、从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的
K-means算法的叙述正确的是()A、在K-means算法中K是事先给定的,这个K值的选定是非常难以估计的B、在K-means算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化C、对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目的新的聚类心,因此当数据量非常大时,算法的时间开销是非常大的
K-Means聚类法要求自变量之间不存在共线性,是因为()A、变量存在多重共线性时无法得到聚类结果B、变量存在多重共线性时无法解释聚类结果C、变量存在多重共线性时,相关变量会在距离计算中占据很高的权重,从而对聚类结果有负面的影响D、变量存在多重共线性时,得到的聚类结果是完全错误的
下列关于学习动机与学习效果关系的说法中正确的是()。A、学习动机可以影响学习效果,但学习效果不会影响学习动机B、学习动机不会影响学习效果,学习效果也不会影响学习动机C、学习动机可以影响学习效果,学习效果也可以反作用于学习动机D、学习动机不会影响学习效果,但学习效果可以影响学习动机
单选题下列关于学习动机与学习效果关系的说法中正确的是()。A学习动机可以影响学习效果,但学习效果不会影响学习动机B学习动机不会影响学习效果,学习效果也不会影响学习动机C学习动机可以影响学习效果,学习效果也可以反作用于学习动机D学习动机不会影响学习效果,但学习效果可以影响学习动机
单选题K-Means聚类法要求自变量之间不存在共线性,是因为()A变量存在多重共线性时无法得到聚类结果B变量存在多重共线性时无法解释聚类结果C变量存在多重共线性时,相关变量会在距离计算中占据很高的权重,从而对聚类结果有负面的影响D变量存在多重共线性时,得到的聚类结果是完全错误的
单选题下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。AJP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇BJP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇CJP聚类是基于SNN相似度的概念DJP聚类的基本时间复杂度为O(m)
多选题K-means算法叙述正确的是()A在K-means算法中K是事先给定的,这个K值的选定是非常难以估计的B在K-means算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化C对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目D从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的
单选题K-means算法的缺点不包括()AK必须是事先给定的B选择初始聚类中心C对于“噪声”和孤立点数据是敏感的D可伸缩、高效