设总体X~N(60,225),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.
设总体X~N(60,225),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.
参考答案和解析
因为X 1 ,X 2 ,…,X 10 和Y 1 ,Y 2 ,…,Y n 独立同分布, 于是X-Y~N(0,0.5). 概率为0.6744。
相关考题:
假设某总体服从正态分布N(12,4),现从中随机抽取一容量为5的样本X1,X2,X3,X4,X5,则:样本均值与总体均值之差的绝对值大于1的概率是( )。A.0.2628B.0.98C.0.9877D.0.9977
假设某总体服从正态分布N(12, 4),现从中随机抽取一容量为5的样本X1,X2, X3, X4, X5,则:样本均值与总体均值之差的绝对值大于1的概率是()。A. 0.2628 B. 0. 98 C. 0.9877 D. 0.9977
设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值x= 31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为( )。A.(30.88, 32.63)B.(31.45, 31.84)C.(31.62, 31.97)D.(30.45, 31.74)
设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值图.png= 31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为()。A.(30.88, 32.63)B.(31.45, 31.84)C.(31.62, 31.97)D.(30.45, 31.74)
单选题已知总体的均值为100,标准差为10,从该总体中随机抽取容量为100的样本,则样本均值抽样分布的标准误差为()A100B10C1D50