在周期信号的傅里叶级数分解和合成中,即使合成波形所含谐波次数趋于无穷大,仍会存在吉布斯现象。

在周期信号的傅里叶级数分解和合成中,即使合成波形所含谐波次数趋于无穷大,仍会存在吉布斯现象。


参考答案和解析
离散非周期频谱

相关考题:

周期连续信号的频率描述应用()对信号进行分解。 A、拉式变换B、傅里叶变换C、相关函数D、傅里叶级数

非正弦周期信号的分解可用什么方法实现:()A.傅里叶变化;B.傅里叶变换;C.傅里叶级数展开;D.傅里叶卷积

用有限项傅里叶级数表示周期信号,吉布斯现象是不可避免的。() 此题为判断题(对,错)。

傅里叶级数中的系数表示谐波分量的( )。 A: 相位B: 周期C: 振幅D: 频率

周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值()A越大B越小C不变D不一定

一般周期信号可以利用傅里叶级数展开成()不同频率的谐波信号的线性叠加。 A、两个B、多个乃至无穷多个C、偶数个D、奇数个

将一个周期函数展开成一系列谐波之和的傅里叶级数称为(). A、谐波分析B、谱分析C、相位分析D、次谐波分析

周期信号f(t)=-f(t±T/2),(T—周期),下列哪些不是其傅里叶级数展开式的结构特点()。 A、只有正弦项B、只有余弦项C、只含偶次谐波D、只含奇次谐波

某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项被称为( )。A.三次谐波分量B.六次谐波分量C.基波分量D.五次谐波分量

某周期为T的非正弦周期信号分解为傅里叶级数时,其三次谐波的角频率为300πrad/s,则该信号的周期T为( )s。A.50B.0.06C.0.02D.0.05

周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越( )A.大B.小C.无法判断

一个非正弦周期信号,利用傅里叶级数展开一般可以分解为( )。A.直流分量B.基波分量C.振幅分量D.谐波分量

关于谐波分析,下列说法正确的是( )A.一个非正弦周期波可分解为无限多项谐波成分,这个分解的过程称为谐波分析B.谐波分析的数学基础是傅里叶级数C.所谓谐波分析,就是对一个已知波形的非正弦周期信号,找出它所包含的各次谐波分量的振幅和频率,写出其傅里叶级数表达式的过程D.方波的谐波成分中只含有正弦成分的各偶次谐波

周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值( )。A.越大B.越小C.无法确定D.不变

()是指对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量。A谐波B基波C偶次谐波D奇次谐波

傅里叶级数是傅里叶在研究()现象时提出的

双回线故障测距采用的算法是()。A、傅里叶分解法B、谐波提取法C、六序故障分量法D、波形分解法

任意给出几种常见的非正弦周期信号波形图,你能否确定其傅里叶级数展开式中有无恒定分量()A、不能B、能C、不确定

周期信号傅里叶级数展开的含义是什么?

一个非正弦周期波可分解为无限多项谐波成分,这个分解的过程称为(),其数学基础是傅里叶级数。

若周期信号f(t)是周期偶函数,则其傅氏级数中只有偶次谐波

所谓谐波分析,就是对一个已知()的非正弦周期信号,找出它所包含的各次谐波分量的()和(),写出其傅里叶级数表达式的过程。

周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越()A、大B、小C、无法判断

周期为丁的非正弦信号可以分解为傅里叶级数的条件为()。A、满足狄利赫利条件B、无条件C、必须平均值为零

某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项称为()。A、三次谐波分量B、六次谐波分量C、基波分量D、高次谐波分量

单选题某周期为T的非正弦周期信号分解为傅里叶级数时,其三次谐波的角频率为300nrad/s,则该信号的周期T为()S。A50B0.06C0.02D不确定

单选题如下不正确的描述是()。A满足狄里赫利条件的周期信号可描述为傅里叶级数形式B满足狄里赫利条件的周期信号可分解为一系列谐波分量C满足狄里赫利条件的周期信号的频谱是离散的频谱D满足狄里赫利条件的周期信号的谱线密度与周期信号的周期无关

单选题某周期为0.02s的非正弦周期信号,分解成傅里叶级数时,角频率为300πrad/s的项称为()。A三次谐波分量B六次谐波分量C基波分量D高次谐波分量