设G是n阶无孤立点的图,V*是G的最小顶点覆盖,则V-V*是G的()。A.最大独立集B.最大匹配C.最小顶点覆盖D.最小边覆盖
设G是n阶无孤立点的图,V*是G的最小顶点覆盖,则V-V*是G的()。
A.最大独立集
B.最大匹配
C.最小顶点覆盖
D.最小边覆盖
参考答案和解析
最大独立集
相关考题:
● 若无向连通图 G 具有 n个顶点,则以下关于图 G的叙述中,错误的是(43)。(43)A.G 的边数一定多于顶点数B.G 的生成树中一定包含 n个顶点C.从 G 中任意顶点出发一定能遍历图中所有顶点D.G 的邻接矩阵一定是n阶对称矩阵
设G是n个顶点的无向简单图,则下列说法不正确的是() A、若G是树,则其边数等于n-1B、若G是欧拉图,则G中必有割边C、若G中有欧拉路,则G是连通图,且有零个或两个奇度数顶点D、若G中任意一对顶点的度数之和大于等于n-1,则G中有汉密尔顿路
若无向连通图G具有n个顶点,则以下关于图G的叙述中,错误的是( )。A.c的边数一定多于顶点数B.G的生成树中一定包含n个顶点C.从c中任意顶点出发一定能遍历图中所有顶点D.G的邻接矩阵一定是n阶对称矩阵
下列命题正确的是(58)。A.G为n阶无向连通图,如果G的边数m≥n-1,则G中必有圈B.二部图的顶点个数一定是偶数C.若无向图C的任何两个不相同的顶点均相邻,则G为哈密尔顿图D.3-正则图的顶点个数可以是奇数,也可以是偶数
设有一个无向图G=(V,E)和G′=(V′,E′),如果G′为G的生成树,则下面不正确的说法是(40)。A.G′为G的子图B.G′为G的极小连通子图且V′=VC.G′为G的一个无环子图D.G′为G的边通分量
设无向图G=(V,E)和G′=(V′,E′),如果G′是G的生成树,则下面的说法中错误的是()。A.G′为G的极小连通子图且V=V′B.G′是G的一个无环子图C.G′为G的子图D.G′为G的连通分量
设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面的说法中错误的是()。A、G’为G的子图B、G’为G的连通分量C、G’为G的极小连通子图且V=V’D、G’是G的一个无环子图
单选题设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面的说法中错误的是()。AG’为G的子图BG’为G的连通分量CG’为G的极小连通子图且V=V’DG’是G的一个无环子图
单选题设无向图G有n个顶点m条边,则其邻接表中表结点数是()AnB2nCmD2m