设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面的说法中错误的是()。A、G’为G的子图B、G’为G的连通分量C、G’为G的极小连通子图且V=V’D、G’是G的一个无环子图
设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面的说法中错误的是()。
- A、G’为G的子图
- B、G’为G的连通分量
- C、G’为G的极小连通子图且V=V’
- D、G’是G的一个无环子图
相关考题:
设V'和E'分别为无向连通图G的点割集和边割集,下面的说法中正确的是Ⅰ.G-E'的连通分支数p(G-E')=2。Ⅱ.G-V'的连通分支数p(G-V')一定等于G-E'的连通分支数p(G-E')。Ⅲ.G-V'的连通分支数p(G-V')≥2。A.Ⅰ和ⅡB.Ⅰ和ⅢC.ⅡD.没有
以下控制流图的圈复杂度V(g)和基本圈复杂度EV(g)是___(63)___(63)A.V(g)=5 EV(g)=1 B.V(g)=6 EV(g)=6C.V(g)=5 EV(g)=5 D.V(g)=6 EV(g)=1
设|V|=n(n>1),当且仅当______,G=是强连通图。A.G中至少有一条路B.G中至少有一条回路C.G中有 设|V|=n(n>1),当且仅当______,G=<V,E>是强连通图。A.G中至少有一条路B.G中至少有一条回路C.G中有通过每个节点至少一次的路D.G中有通过每个节点至少一次的回路A.B.C.D.
设无向图G=(P,L),P={v1,v2,v3,v4,v5,v6},L={(v1,v2),(v2,v2),(v2,v4),(v4,v5),(v3,v4),(v1,v3),(v3,v1)}。G中奇数度顶点的个数是(60)。A.2B.3C.4D.5
设有一个无向图G=(V,E)和G′=(V′,E′),如果G′为G的生成树,则下面不正确的说法是(40)。A.G′为G的子图B.G′为G的极小连通子图且V′=VC.G′为G的一个无环子图D.G′为G的边通分量
设无向图G=(V,E)和G′=(V′,E′),如果G′是G的生成树,则下面的说法中错误的是()。A.G′为G的极小连通子图且V=V′B.G′是G的一个无环子图C.G′为G的子图D.G′为G的连通分量
设有向图G=(V,E)和G′-(V′,E′).如(G′)是G生成树,下面说法中不正确的是()A.G′为G的连通分量B.G′为G的无环子图C.G′为G的子图D.G′为G的极小连通子图且V′=V
以下控制流图的圈复杂度V(g)和基本圈复杂度EV(g)是( )。A.V(g)=5 EV(g)=1B.V(g)=6 EV(g)=6C.V(g)=5 EV(g)=5D.V(g)=6 EV(g)=1
图G的邻接矩阵如下图所示(顶点依次表示为v0、v1、v2、v3、v4、v5),G是(请作答此空)。对G进行广度优先遍历(从v0开始),可能的遍历序列为( )。A.无向图B.有向图C.完全图D.强连通图
已知无向图G描述如下: G=(V,E) V={V1,V2,V3,V4,V5} E={(V1,V2),(V1,V4),(V2,V4),(V3,V4),(V2,V5),(V3,V4),(V3,V5)}写出每个顶点的度。
设G是一个v阶交换群,运算记成加法,设D是G的一个k元子集,如果G的每个非零元a都有λ种方式表示成a=d1-d2,那么称D是G的什么?()A、(v,k,λ)-差集B、(v,k,λ)-合集C、(v,k,λ)-子集D、(v,k,λ)-空集
单选题设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面的说法中错误的是()。AG’为G的子图BG’为G的连通分量CG’为G的极小连通子图且V=V’DG’是G的一个无环子图
单选题设G是一个v阶交换群,运算记成加法,设D是G的一个k元子集,如果G的每个非零元a都有λ种方式表示成a=d1-d2,那么称D是G的什么?()A(v,k,λ)-差集B(v,k,λ)-合集C(v,k,λ)-子集D(v,k,λ)-空集