线性规划问题图解法中图上的任意一点表示(AB)(多选题) A.决策变量的一组值 B.一个决策方案 C.可行解 D.最优解A.决策变量的一组值B.一个决策方案C.可行解D.最优解
线性规划问题图解法中图上的任意一点表示(AB)(多选题) A.决策变量的一组值 B.一个决策方案 C.可行解 D.最优解
A.决策变量的一组值
B.一个决策方案
C.可行解
D.最优解
参考答案和解析
LP问题的最优解一定在可行域的顶点上达到;可行域中顶点的转移实现了数学迭代;顶点的转移使得目标函数值上升或下降;LP问题不一定有最优解
相关考题:
● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个
下面关于图解法解线性规划问题的说法不正确的是()A. 在平面直角坐标系下,图解法只适用于两个决策变量的线性规划B. 图解法适用于两个或两个以上决策变量的线性规划C. 图解法解线性规划要求决策变量个数不要太多,一般都能得到满意解D. 以上说法A正确,B,C不正确
用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。 A 、有无穷多个最优解B 、有可行解但无最优解C 、有可行解且有最优解D 、无可行解
线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到
用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。A.有无穷多个最优解B.有可行解但无最优解C.有可行解且有最优解D.无可行解
互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解
对于线性规划问题,下列说法正确的是()A、线性规划问题可能没有可行解B、在图解法上,线性规划问题的可行解区域都是“凸”区域C、线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D、上述说法都正确
关于线性规划问题的图解法,下面()的叙述正确。A、可行解区无界时一定没有最优解B、可行解区有界时不一定有最优解C、如果在两个点上达到最优解,则一定有无穷多个最优解D、最优解只能在可行解区的顶点达到
单选题关于求解线性规划最大值问题的最优解,叙述正确的是()A对某个线性规划问题,最大值可能不存在,也可能有一个或多个最大值B若有最优解,则最优的可行基解必唯一C基变量均非负,非基变量均为0,这种解就是最优解D若有最优解,则最大值必唯一,但最优解不一定唯一
多选题关于求解线性规划极大值问题的最优解,下面的叙述不正确的有()。A对某个线性规划问题,极大值可能不存在,也可能有一个或多个极大值B若有最优解,则最优的可行基解必唯一C基变量均非负,非基变量均为0,这种解就是最优解D若有最优解,则极大值必唯一,但最优解不一定唯一
单选题对于线性规划问题,下列说法正确的是()A线性规划问题可能没有可行解B在图解法上,线性规划问题的可行解区域都是“凸”区域C线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D上述说法都正确
多选题一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A(P)可行D.无解,则(P)无有限最优解B(P)、D.均有可行解,则都有最优解C(P)有可行解,则D.有最优解D(P)D.互为对偶EE.(P)有最优解,则有可行解